Please go to the published source for citations and quotes. A direct link to the published source is provided when the work is open access.
Submitted for publication
Finnemann, A., Borsboom, D., Waldorp, L. J., Marsman, M., & van der Maas, H. L. J. (2024). A Theory Construction Methodology for Network Theories in Psychology. [PsyArXiv]
Huth, K. B. S., Zavlis, O., Luigjes, J., Galenkamp, H., Lok, A., Bockting, C., Goudriaan, A. E., Marsman, M., & van Holst, R. J. (2022). A Network Perspective on Ethnic, Religious, and Socioeconomic Factors in Alcohol Use—the HELIUS Study. [PsyArXiv]
Sekulovski, N., Blanken, T. F., Haslbeck, J. M. B., & Marsman, M. (2024). The Impact of Dichotomization on Network Recovery. [PsyArXiv]
Marsman, M., Waldorp, L. J., Sekulovski, N., & Haslbeck, J. M. B. (2024). A Bayesian Independent Samples t Test for Parameter Differences in Networks of Binary and Ordinal Variables. [PsyArXiv]
van Bork, R., Marsman, M., Rhemtulla, M., Epskamp, S., Kruis, J., & Borsboom, D. (2018). Common Effect Models: Positive or Negative Manifold? [PsyArXiv]
van den Bergh, D., Douw, L., van der Pal, Z., Blanken, T. F., Schrantee, A., & Marsman, M. (2024). Jointly Estimating Individual and Group Networks from fMRI Data. [PsyArXiv]
van der Pal, Z., Douw, L., Genis, A., van den Bergh, D., Marsman, M., Schrantee, A., & Blanken, T. (2024). Tell me why? A scoping review on the fundamental building blocks of fMRI networks. [PsyArXiv]
Waldorp, L. J., & Marsman, M. (2024). Evolving Networks, Markov Chains and Dynamical Systems.
Zavlis, O., Huth, K. B. S., Luigjes, J., Galenkamp, H., Lok, A., Stronks, K., Bockting, C. L. H., Goudriaan, A., Marsman, M., & van Holst, R. J. (2024). The interplay of alcohol use symptoms and sociodemographic factors in the Netherlands: A network perspective.
Accepted for publication
Bosma, M. J., Vermeulen, J. M., Huth, K. B. S., de Haan, L., Alizadeh, B. Z., Simons, C. J. C., Marsman, M., & Schirmbeck, F. (in press). Exploring the Interactions between Psychotic Symptoms, Cognition, and Environmental Risk Factors: A Bayesian Analysis of Networks. Schizophrenia Bulletin.
Maier, M., Bartoš, F., Quintana, D. S., Dablander, F., van den Bergh, D., Marsman, M., Ly, A., Wagenmakers, E.-J. (in press). Model-Averaged Bayesian t-Tests. Psychonomic Bulletin & Review [PsyArXiv]
Marsman, M., van den Bergh, D., & Haslbeck, J. M. B. (in press). Bayesian Analysis of the Ordinal Markov Random Field. Psychometrika. [PsyArXiv] [CRAN]
2024
Briganti, G., Scutari, M., Epskamp, S., Borsboom, D., Hoekstra, R. H. A., Golino, H. F., Christensen, A. P., Morvan, Y., Ebrahimi, O. V., Heeren, A., van Bork, R., de Ron, J., Bringmann, L. F., Huth, K. B. S., Haslbeck, J. M. B., Isvoranu, A.-M., Marsman, M., Blanken, T. F., Gilbert, A., Henry, T. R., Fried, E. I., & McNally, R. J. (2024). Network analysis: An overview for mental health research. International Journal of Methods in Psychiatric Research, 33(4: e2034).
Hoogeveen, S., Borsboom, D., Kucharsky, S., Marsman, M., Molenaar D., de Ron, J., Sekulovski, N., Visser, I., van Elk, M., & Wagenmakers, E.-J. (2024). Prevalence, Patterns, and Predictors of Paranormal Beliefs in the Netherlands: A Several-Analysts Approach. Royal Society Open Science, 11(9), 11240049. [PsyArXiv]
Huth, K. B. S., Keetelaar, S., Sekulovski, N., van den Bergh, D., & Marsman, M. (2024). Simplifying Bayesian Analysis of Graphical Models for the Social Sciences With easybgm: A User-Friendly R-Package. Advances .in/psychology, e66366. [PsyArXiv]
Keetelaar, S., Sekulovski, N., Borsboom, D., & Marsman, M. (2024). Comparing Maximum Likelihood and Pseudo-Maximum Likelihood Estimators for the Ising Model. Advances .in/psychology, e25745. [PsyArXiv]
Sekulovski, N., Keetelaar, S., Haslbeck, J. M. B., & Marsman, M. (2024). Sensitivity Analysis of Prior Distributions in Bayesian Graphical Modeling: Guiding Informed Prior Choices for Conditional Independence Testing. Advances .in/psychology, e92355. [PsyArXiv]
Sekulovski, N., Keetelaar, S., Huth, K. B. S., Wagenmakers, E.-J., van Bork, R., van den Bergh, D., & Marsman, M. (2024). Testing Conditional Independence in Psychometric Networks: An Analysis of Three Bayesian Methods. Multivariate Behavioral Research, 59,913-933.[PsyArXiv]
Sekulovski, N., Marsman, M., & Wagenmakers, E.-J. (2024). A Good Check on the Bayes Factor. Behavior Research Methods, 56, 8552–8566. [PsyArXiv]
2023
Huth, K. B. S., de Ron, J., Goudriaan, A. E., Luigjes, J., Mohammadi, R., van Holst, R. J., Wagenmakers, E.-J., & Marsman, M. (2023). Bayesian Analysis of Cross-Sectional Networks: A Tutorial in R and JASP. Advances in Methods and Practices in Psychological Science, 6(4), 1-18 [PsyArXiv]
Marsman, M., & Huth, K. B. S. (2023). Idiographic Ising and Divide and Color Models: Encompassing networks for heterogeneous binary data. Multivariate Behavioral Research, 58, 787-814. [PsyArXiv].
Marsman, M., Waldorp, L. J., & Borsboom, D. (2023). Towards an Encompassing Theory of Network Models: Reply to Brusco, Steinley, Hoffman, Davis-Stober, & Wasserman. Psychological Methods, 28(4), 757-764. [PsyArXiv].
Sarafoglou, A., Aust, F., Marsman, M., Wagenmakers, E.-J., & Haaf, J. (2023). multibridge: An R Package to Evaluate Informed Hypotheses in Binomial and Multinomial Models. Behavior Research Methods, 55, 4343-4368. [PsyArXiv] [CRAN]
Sarafoglou, A., Haaf, J. M., Ly, A., Gronau, Q. F., Wagenmakers, E.-J., & Marsman, M. (2023). Evaluating Multinomial Order Restrictions with Bridge Sampling. Psychological Methods, 28, 322-338. [PsyArXiv] [CRAN]
2022
Dalege, J., Haslbeck, J. M. B., & Marsman, M. (2022). Idealized modeling of psychological dynamics. In Isvorany, A.-M., Epskamp, S., Waldorp, L., & Borsboom D. (Eds.), Network Psychometrics with R (pp. 233-245).
Huth, K. B. S., Waldorp, L. J., Luigjes, J., Goudriaan, A. E., van Holst, R. J., & Marsman, M. (2022). A Note on the Structural Change Test in Finite Samples: Using a Permutation Approach to Estimate the Sampling Distribution. Psychometrika, 87, 1064-2080. [PsyArXiv]
Marsman, M., Bechger, T. M., & Maris, G. K. J. (2022). Composition Algorithms for Conditional Distributions. In van der Ark, L. A., Emons, W. H. M., & Meijer, R. R. (Eds.), Essays on Contemporary Psychometrics (pp. 219-250). Springer [PsyArXiv]
Marsman, M., & Rhemtulla, M. (2022). Guest Editors’ Introduction to the Special Issue “Network Psychometrics in Action”: Methodological Innovations Inspired by Empirical Problems. Psychometrika, 87(1), 1-11.
Marsman, M., Huth, K. B. S., Waldorp, L. J., & Ntzoufras, I. (2022). Objective Bayesian Edge Screening and Structure Selection for Ising Networks. Psychometrika, 87(1), 47-82.
Mulder, J., Wagenmakers, E.-J., & Marsman, M. (2022). A Generalization of the Savage-Dickey Density Ratio for Testing Equality and Order Constrained Hypotheses. The American Statistician, 76(2), 102-109.
Sarafoglou, A., van der Heijden, A., Draws, T., Cornelisse, J., Wagenmakers, E.-J., & Marsman, M. (2022). Combine Statistical Thinking with Open Scientific Practice: A Protocol of a Bayesian Research Project. Psychology Learning and Teaching, 21(2), 138-150. [ArXiv]
Waldorp, L. J., & Marsman, M. (2022). Relations Between Networks, Regression, Partial Correlation, and Latent Variable Models. Multivariate Behavioral Research, 57(6), 994-1006. [ArXiv]. Was awarded the Tanaka Award for best paper published in Multivariate Behavioral Research in 2022 by the Society for Multivariate Experimental Psychology.
2021
Bechger, T. M., Maris, G. K. J., & Marsman, M. (2021). Bayesian Inference in Large-Scale Computational Psychometrics. In A. von Davier, R. J. Mislevy, & J. Hao (Eds.), Computational Psychometrics: New Methodologies for a New Generation of Digital Learning and Assessment (pp. 109-131). Springer Nature Switzerland AG.
Boehm, U., Marsman, M., van der Maas, H. L. J., & Maris, G. K. J. (2021). An Attention-Based Diffusion Model for Psychometric Analyses. Psychometrika, 86(4), 938-972.
Haslbeck, J., Epskamp, S., Marsman, M., & Waldorp, L. J. (2021). Interpreting the Ising Model: The Input Matters. Multivariate Behavioral Research, 56(2), 303-313.
Huth, K. B. S., Luigjes, K., Marsman, M., Goudriaan, A. E., & van Holst, R. J. (2021). Modeling Alcohol Use Disorder As a Set of Interconnected Symptoms –Assessing Differences Between Clinical and Population Samples and Across External Factors. Addictive Behaviors, 125(107128).
Epskamp, S., Fried, E., van Borkulo, C., Robinaugh, D. J., Marsman, M, Dalege, J., Rhemtulla, M., & Cramer, A. (2021). Investigating the Utility of Fixed-Margin Sampling in Network Psychometrics. Multivariate Behavioral Research, 56(2), 314-328.
van den Bergh, D., Clyde, M. A., Raj, A., de Jong, T., Gronau, Q. F., Marsman, M., Ly, A., and Wagenmakers, E.-J. (2021). A Tutorial on Bayesian Multi-Model Linear Regression with BAS and JASP. Behavior Research Methods, 53, 2351-2371.
van Doorn, J., van den Bergh, D., Boehm, U., Dablander, F., Derks, K., Draws, T., Evans, N. J., Gronau, Q. F., Hinne, M., Kucharsky, S., Ly, A., Marsman, M., Matzke, D., Komarlu Narendra Gupta, A. R., Sarafoglou, A., Stefan, A., Voelkel, J. G., & Wagenmakers, E.-J. (2021). The JASP Guidelines for Conducting and Reporting a Bayesian Analysis. Psychonomic Bulletin & Review, 28, 813-826.
van Doorn, J., van den Bergh, D., Dablander, F., van Dongen, N., Derks, K., Evans, N., Gronau, Q. F., Haaf, J. M., Kunisato, Y., Ly, A., Marsman, M., Sarafoglou, A., Stefan, A., & Wagenmakers, E.-J. (2021). Strong Public Claims May Not Reflect Researchers’ Private Convictions. Significance, 18, 44-45.
Savi, O. A., Marsman, M., van der Maas, H. L. J. (2021). Evolving Networks of Human Intelligence. Intelligence, 88(101567).
2020
Kruis, J., Maris, G. K. J., Marsman, M., Bolsinova, M., & van der Maas, H. L. J. (2020). Deviations of Rational Choice: An Integrative Explanation of the Endowment and Several Context Effects. Scientific Reports, 10(16226).
Landy, J.F., Jia, M. , Ding, I. L., Viganola, D., Tierney, W., Dreber, A., Johannesson, M., Pfeiffer, T., Ebersole, C.R., Gronau, Q.F., Ly, A., van den Bergh, D., Marsman, M., Derks, K., Wagenmakers, E.-J., Proctor, A., Bartels, D.M., Christopher W., Bauman, C.W., Brady, W.J., Cheung, F., Cimpian, A., Dohle, S., Donnellan, M.B., Hahn, A., Hall, M.P., Jiménez-Leal, W., Johnson, D.J., Lucas, R.E., Monin, B., Montealegre, A., Mullen, E., Pang, J., Ray, J., Reinero, D.A., Reynolds, J., Sowden, W., Storage, D., Su, R., Tworek, C.M., van Bavel, J.J., Walco, D., Wills, J., Xu, X., Yam, K.C., Yang, X., Cunningham, W.A., Schweinsberg, M., Urwitz, M., the Crowdsourcing Hypothesis Tests Collaboration, & Uhlmann, E.L. (2020). Crowdsourcing Hypothesis Tests: Making Transparent How Design Choices Shape Research Results. Psychological Bulletin, 146(5), 451–479.
Ly, A., Stefan, A., van Doorn, J., Dablander, F., van den Bergh, D., Sarafoglou, A., Kucharský, Š., Derks, K., Gronau, Q. F., Raj, A., Boehm, U., van Kesteren, E.-J., Hinne, M., Matzke, D., Marsman, M., & Wagenmakers, E.-J. (2020). The Bayesian Methodology of Sir Harold Jeffreys as a Practical Alternative to the P-Value Hypothesis Test. Computational Brain & Behavior, 3, 153-161.
van den Bergh, D., van Doorn, J., Marsman, M., Draws, T., van Kesteren, E.-J., Derks, K., Dablander, F., Gronau, Q. F., Kucharský, Š., Komarlu Narendra Gupta, A. R., Sarafoglou, A., Voelkel, J. G., Stefan, A., Ly, A., Hinne, M., Matzke, D., & Wagenmakers, E.-J. (2010). A Tutorial on Conducting and Interpreting a Bayesian ANOVA in JASP. L’Année Psychologique/Topics in Cognitive Psychology, 120, 73-96. [press “télécharger” for the free pdf]
van Doorn, J. B., Ly, A., Marsman, M., & Wagenmakers, E.-J. (2020). Bayesian Rank-Based Hypothesis Testing for the Rank-Sum Test, the Signed-Rank Test, and Spearman’s Rho. Journal of Applied Statistics, 47(16), 2984–3006.
2019
Boffo, M., Zerhouni, O., Gronau, Q. F., van Beek, R. J. J., Nikolaou K., Marsman, M., & Wiers, R. W. (2019). Cognitive Bias Modification for behavior change in alcohol and smoking addiction: a Bayesian meta-analysis of individual participant data. Neuropsychology Review, 29(1), 52-78.
Borsboom, D. & Marsman, M. (2019). Latente variabelen en netwerken: Verschillende benaderingen van psychometrische data. Nieuw Archief voor Wiskunde, 20(3), 183–189.
Love, J., Selker, R., Marsman, M., Jamil, T., Dropmann, D., Verhagen, A. J., Ly, A., Gronau, Q. F., Šmíra, M., Epskamp, S., Matzke, D., Wild, A., Knight, P., Rouder, J. N., Morey, R. D., & Wagenmakers, E.-J. (2019). JASP – graphical statistical software for common statistical designs. Journal of Statistical Software, 88(2), 1–17. Doi: 10.18637/jss.v088.i02
Ly, A., Etz, A., Marsman, M., & Wagenmakers, E.-J. (2019). Replication Bayes factors from evidence updating. Behavior Research Methods, 51, 2498-2508.
Marsman, M., Sigurdardottir, H., Bolsinova, M., & Maris, G. K. J. (2019). Characterizing the manifest probability distributions of three latent trait models for accuracy and response time. Psychometrika, 84(3), 870-891.
Marsman, M., Tanis, C. C., Bechger, T. M., & Waldorp, L. J. (2019). Network psychometrics in educational practice. Maximum likelihood estimation of the Curie-Weiss model. In B. P. Veldkamp, & C. Sluijter (Eds.), Theoretical and Practical Advances in Computer-Based Educational Measurement (pp. 93-120). Springer Nature Switzerland AG.
Marsman, M., Waldorp, L. J., Dablander, F. & Wagenmakers, E.-J. (2019). Bayesian estimation of explained variance in ANOVA designs. Statistica Neerlandica, 73(3), 351-372.
Savi, O. A., Marsman, M., van der Maas, H. L. J., & Maris, G. K. J. (2019). The Wiring of Intelligence. Perspectives on Psychological Science, 14(6), 1034-1061.
van der Maas, H. L. J., Savi, A. O., Hofman, A., Kan, K.-J., & Marsman, M. (2019). The network approach to general intelligence. In D. J. McFarland (Ed.), General and specific mental abilities (pp. 108–131). Cambridge Scholars Publishing. [PsyArXiv]
van Doorn, J., Ly, A., Marsman, M., & Wagenmakers, E.-J. (2019). Bayesian estimation of Kendall’s tau using a latent normal approach. Statistics & Probability Letters, 145, 268-272.
Waldorp, L. J., Marsman, M., & Maris, G. K. J. (2019). Logistic regression and Ising networks: Prediction and estimation when violating lasso assumptions. Behaviormetrika, 46(1), 49-72.
2018
Boehm, U., Marsman, M., Matzke, D., & Wagenmakers, E.-J. (2018). On the importance of avoiding shortcuts in modelling hierarchical data. Behavior Research Methods, 50(4), 1614-1631.
Hofman, A., Visser, I., Jansen, B., Marsman, M. & van der Maas, H. L. J. (2018). Fast and slow strategies in multiplication. Learning and Individual Differences, 60, 30-40.
Ly, A., Marsman, M. & Wagenmakers, E.-J. (2018). Analytic posteriors for Pearson’s correlation coefficient. Statistica Neerlandica, 72(1), 4-13.
Ly, A., Raj, A., Marsman, M., Etz, A., & Wagenmakers, E.-J. (2018). Bayesian reanalyses from summary statistics: A guide for academic consumers. Advances in Methods and Practices in Psychological Science, 1(3), 367-374.
Marsman, M., Borsboom, D., Kruis, J., Epskamp, S., van Bork, R., Waldorp, L. J., van der Maas, H. L. J. & Maris, G. K. J. (2018). An introduction to Network Psychometrics: Relating Ising network models to item response theory models. Multivariate Behavioral Research, 53(1), 15-35.
van Doorn, J. B., Ly, A., Marsman, M. & Wagenmakers, E.-J. (2018). Bayesian inference for Kendall’s rank correlation coefficient. The American Statistician, 72(4), 303-308.
Wagenmakers, E.-J., Love, J., Marsman, M., Jamil, T., Ly, A., Verhagen, A. J., …, Morey, R. D. (2018). Bayesian inference for psychology. Part II: Example applications with JASP. Psychonomic Bulletin & Review, 25(1), 58-76.
Wagenmakers, E.-J., Marsman, M., Jamil, T., Ly, A., Verhagen, A. J., Love, J., …, Morey, R. D. (2018). Bayesian inference for psychology. Part I: Theoretical advantages and practical ramifications. Psychonomic Bulletin & Review, 25(1), 35-57.
2017
Epskamp, S., Kruis, J., & Marsman, M. (2017). Estimating psychopathological networks: Be careful what you wish for. PloS One, 12(6), e0179891.
Gronau, Q. F., Sarafoglou, A., Matzke, D., Boehm, U., Marsman, M., Leslie, D. S., Forster, J. J., Wagenmakers, E.-J., & Steingroever, H. (2017). A tutorial on Bridge Sampling. Journal of Mathematical Psychology, 81, 80-97.
Jamil, T., Ly., A., Morey, R. D., Love, J., Marsman, M., & Wagenmakers, E.-J. (in press). Default “Gunel and Dickey” Bayes factors for contingency tables. Behavior Research Methods, 49(2), 638-652.
Jamil, T., Marsman, M., Ly, A., Morey, R. D., & Wagenmakers, E.-J. (2017). What are the odds? Modern relevance and Bayes factor solutions for MacAlister’s problem from the 1881 Educational Times. Educational and Psychological Measurement, 77(5), 819-830.
Lever, A. G., Ridderinkhof, R., Marsman, M., & Geurts, H. M. (2017). Reactive and proactive interference control in adults with autism spectrum disorder across the lifespan. Developmental Psychology, 53(2), 379-395.
Ly, A., Boehm, U., Heathcote, A., Turner, B. M., Forstmann, B., Marsman, M., & Matzke, D. (2017). A flexible and efficient hierarchical Bayesian approach to the exploration of individual differences in cognitive-model-based neuroscience. In A.A. Moustafa (Ed.), Computational Models of Brain and Behavior (pp 467-480). John Wiley & Sons.
Ly, A., Marsman, M., Verhagen, A. J., Grasman, R. P. P. P., & Wagenmakers, E.-J. (2017). A tutorial on Fisher Information. Journal of Mathematical Psychology, 80, 40-55.
Marsman, M., Maris, G. K. J., Bechger, T. M., & Glas, C. A. W. (2017). Turning simulation into estimation: Generalized exchange algorithms for exponential family models. PLoS One, 12(1), e0169787.
Marsman, M., Schönbrodt, F. D., Morey, R. D., Yao, Y., Gelman, A., & Wagenmakers, E-J. (2017). A Bayesian Bird’s Eye View of `Replications of Important Results in Social Psychology’. Royal Society Open Science, 4(160426). Correction: We reanalysed the data from 14 studies published in a special issue for Social Psychology. Even though we referred to each of these 14 studies in our figures, we failed to include all them in the reference list. The omitted references can be found in the correction here.
Marsman, M. & Wagenmakers, E.-J. (2017). Bayesian benefits with JASP. European Journal of Developmental Psychology, 14(5), 545-555.
Marsman, M., & Wagenmakers, E.-J. (2017). Three insights from a Bayesian interpretation of the one-sided P value. Educational and Psychological Measurement, 77(3), 529-539.
Marsman, M., Waldorp, L. J. & Maris, G. K. J. (2017). A note on large-scale logistic prediction: Using an approximate graphical model to deal with collinearity and missing data. Behaviormetrika, 44(2), 513-534.
van der Maas, H. L. J., Kan, K.-J., Marsman, M., & Stevenson, C. E. (2017). Network models for cognitive development and intelligence. Journal of Intelligence, 5(2).
2016
Marsman, M., Ly, A., Wagenmakers, E.-J. (2016). Four requirements for an acceptable research program. Basic and Applied Social Psychology, 38(6), 308-312.
Marsman, M., Maris, G. K. J., Bechger, T. M., & Glas, C. A. W. (2016). What can we learn from Plausible Values? Psychometrika, 81(2), 274-289.
Schweinsberg, M., Madan, N., Vianello, M., Sommer, S., Jordan, J., Tierney, W., … Uhlmann, E. (2016). The pipeline project: Pre-publication independent replications of a single laboratory’s research pipeline. Journal of Experimental Social Psychology, 66, 55-67.
Tierney, W., Schweinsberg, M., Jordan, J., Kennedy, D., Qureshi, I., Sommer, S., … Uhlmann, E. (2016). Data from a pre-publication independent replication initiative examining ten moral judgement effects. Scientific Data, 3(160082).
2015
Love, J., Selker, R., Verhagen, J., Marsman, M., Gronau, Q. F., Jamil, T., …, Rouder, J. N. (2015). Software to sharpen your stats. Observer, 28.
Marsman, M., Maris, G. K. J., Bechger, T. M., & Glas, C. A. W. (2015). Bayesian inference for low-rank Ising networks. Scientific Reports, 5(9050).
2014
Fox, J.-P., Marsman, M., Mulder, J., & Verhagen, J. (2014). Complex latent variable modelling in educational assessment. Communications in Statistics — Simulation and Computation, 45(5), 1499-1510.
Marsman, M. (2014). Plausible Values in Statistical Inference (Unpublished doctoral thesis). University of Twente, Enschede, the Netherlands.
2012
Marsman, M., Maris, G. K. J., & Bechger, T. M. (2012). Don’t tie yourself to an onion: Don’t tie yourself to assumptions of normality. In T. H. J. M. Eggen and B. P. Veldkamp (Eds.), Psychometrics in Practice at RCEC (pp. 85-94). Enschede, the Netherlands: RCEC.
Roelofs, E., van Onna, M., Brookhuis, K., Marsman, M., & de Penning, L. (2012). Designing Developmentally Tailored Driving Assessment Tasks for Formative Purposes. In L. Dorn (Ed.), Driver Behavior and Training volume 5 (pp. 61-80). Burlington, USA: Ashgate Publishing Company.