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Abstract

Equal parameter estimates across subgroups - measurement invariance - is a substantial

requirement of statistical tests. Ignoring subgroup differences poses a major threat to study

replicability, model specification, and theory development. One powerful statistical method

that allows testing for measurement invariance is structural change tests. A core element of

those tests is the empirical fluctuation process. In the case of measurement invariance, the

fluctuation process asymptotically follows a Brownian bridge. This asymptotic assumption

further provides the basis for inference. However, in this paper, we show that the empirical

fluctuation process does not follow a Brownian bridge in small samples. Thus, methods of

obtaining the sampling distribution are incorrect, and the p-value misspecified. Therefore,

we propose and implement an alternative solution to obtaining the sampling distribution -

permutation approaches. Permutation approaches obtain the sampling distribution

through resampling of the dataset, avoiding unmet distributional assumptions. We show

that the permutation approach serves as a viable alternative, permitting valid inferential

conclusions.

Keywords: measurement invariance, parameter stability, structural change test,

finite sample behavior, permutation test
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A Note on the Structural Change Test in Finite Samples: Using a Permutation

Approach to Estimate the Sampling Distribution

The assumption of measurement invariance —called differential item functioning,

heterogeneity, or parameter stability in other contexts— underlies virtually all statistical

tests (Bechger and Maris, 2015; Hjort and Koning, 2002; Hansen, 1997). Formally,

measurement invariance is defined as (Mellenbergh, 1989, p. 129),

f(y | v, θ) = f(y | θ),

where f(·) is a parametric distribution that is indexed by a parameter θ, used to model an

observed variable y, and v is an auxiliary variable against which we are testing

measurement invariance. Thus, measurement invariance implies that an identical model

holds for different subgroups (e.g., males and females, older and younger persons, and

persons with different ethnic backgrounds) or measurement occasions (Putnick and

Bornstein, 2016; van de Schoot et al., 2015). Violations of measurement invariance can lead

to misspecified models, spurious parameter estimates and test results, therefore, concealing

differences key for theory development, diagnostic procedures, and treatment design (e.g.,

Kapur et al., 2012; Breslau et al., 2008). Unfortunately, researchers often neglect the

measurement invariance assumption, which poses a major threat to research development

(Borsboom, 2006).

Structural change tests (SCTs) allow us to test for parameter invariance across

subgroups (Brown et al., 1975). These tests were initially proposed by Andrews (1993) for

parameter stability assessment in econometric time-series models, but since then have been

adapted to assess models across the statistical sciences (e.g., Chang and Su, 2014;

Mulaudzi, 2016; O’Connell et al., 2018; Strobl et al., 2015; Zeileis et al., 2008; Merkle et al.,

2014). SCTs have become a popular method for assessing measurement invariance because

they can be straightforwardly implemented, even for complicated statistical models: SCTs
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do not require explicit specification of which parameter diverges or which subgroups behave

differently (Wang et al., 2018). At their core, SCTs use scores (i.e., partial derivatives of

the log-likelihood function with respect to a particular parameter) to determine whether

parameters are invariant across subgroups. Scores are similar to asymptotic influence

functions which are used to determine the effect of single observations on the estimate

(Hampel et al., 2005). The basic premise is that if measurement invariance holds,

aggregated scores randomly fluctuate about zero and converge to a Brownian bridge (Hjort

and Koning, 2002); a process that starts and ends at zero and randomly fluctuates about

zero in between. However, if the fluctuation of the aggregated scores systematically

coincides with an auxiliary variable v, measurement invariance is violated (Zeileis, 2006).

This result is used to determine the sampling distribution of the SCT’s test statistic.

The test statistic’s sampling distribution is well determined for large sample sizes

(Hansen, 1997; Estrella, 2003), and is derived from the observation that aggregated scores

behave like a Brownian bridge asymptotically. Unfortunately, the SCTs in finite samples

are barely studied. Our concern is that the aggregated scores do not approximate a

Brownian bridge in finite samples. An invalid asymptotic approximation has grave

consequences for the SCT; the sampling distribution may be misspecified, and we cannot

control for the type 1 error. In sum, the null-hypothesis statistical test would be wrong. In

light of this concern, our goals are twofold. Our first goal is to assess the SCT’s behavior in

finite samples. In particular, we investigate the distribution of the p-value, which should be

uniformly distributed under the null hypothesis (Hung et al., 1997). For finite samples, the

p-values are not uniformly distributed under the null hypothesis, and this problem becomes

more pronounced in complex models. Our second goal is to show that permutation

approaches offer a simple and viable solution to the problem at hand. Permutation

approaches allow for estimation of the sampling distribution when distributional

assumptions do not hold or are analytically intractable (Mooney and Duval, 1993).

The remainder of this paper is organized as follows. First, we introduce the SCT in
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detail. Then, we investigate the SCT’s finite sample behavior, and in particular, the

distribution of p-values under the null hypothesis. Here, we establish that the

asymptotically derived sampling distribution is incorrect for finite sample sizes. We then

elaborate on an alternative approach to obtaining the sampling distribution - permutation

approaches. To illustrate the issues and our solution, we will use a simple linear regression

model and a more complex Gaussian Graphical model throughout this paper.

Structural Change Tests

The SCT assesses the equivalence of model parameters across subgroups defined by

an auxiliary variable v (Andrews, 1993). Under the null hypothesis, the SCT assumes that

a parameter θj is the same for all subgroups vg, g = 1, . . . , m, of the auxiliary variable.

That is,

H0 : θj vg = θj; ∀ 1 ≤ g ≤ m, 1 ≤ j ≤ k,

where θj vg denotes the parameter value of subgroup vg for parameter θj. The SCT

comprises three steps: First, one estimates the model of interest and determines its

parameter scores. Secondly, so-called empirical fluctuation processes are derived from the

scores. Thirdly, the fluctuation processes are aggregated into a test statistic and compared

against the sampling distribution to compute the p-value. We outline each of these steps

below.

The first step consists of estimating the k parameters of a model of interest. This

paper will focus on estimating the model parameters through maximum likelihood

estimation (MLE, for other approaches, see, for example, Kuan and Hornik (1995)). Once

the MLEs of the model parameters are obtained, the score for every particular parameter

and observation can be calculated. The score is defined as the gradient of the log-likelihood

function. For a parameter θj the score of an observation yi is denoted by:

s(θj, yi) = ∂ log L(θ; yi)
∂θj

,
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where L is the likelihood function of the model, θj the focal parameter and yi the data for

an observation i. Since the MLEs maximize the log-likelihood function, we know that the

sum of the scores for a parameter j across all n observations will sum to zero:

n∑
i=1

s(θ̂j, yi) = 0, (1)

which holds for all parameters in the model.

In the second step, the accumulations of scores across observations are interpreted

as empirical fluctuation processes. These fluctuation processes are analyzed separately for

every parameter of the model. To obtain the fluctuations, the scores are first ordered along

the auxiliary variable v and then aggregated across observations:

Ψ(t; θ̂j) = n−1/2
bntc∑
i=1

s(θ̂j, yi),

where bntc is the floor function of n× t, t a fraction of the n participants (i.e., t = i/n for

i = 1, . . . , n). ∑bntci=1 therefore describes the sum of all scores up until the (n× t)−th term,

which is referred to as the cumulated score. To ensure that the cumulative scores are

independent across parameters, Ψ(t; θ̂j) is decorrelated (Merkle and Zeileis, 2013):

B(t; θ̂j) = Î−1/2Ψ(t; θ̂j),

where Î is the asymptotic covariance matrix of the scores —i.e., the Fisher information

matrix (Zeileis, 2006). Observe that the cumulated scores B(t; θ̂j) are zero for t = 0 and

t = 1. At t = 1, the scores of all observations have been summed up, which by definition of

the MLE is zero, e.g., Eq. (1).

Under H0, the fluctuation processes asymptotically converge to a Brownian bridge

(Hjort and Koning, 2002; Andrews, 1993). Looking at a model with k-parameters, the
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fluctuation processes asymptotically approximate k-independent Brownian bridges,

B(·; θ̂) d−→ B0(·),

where d−→ denotes weak convergence of B(·; θ̂) to a k-dimensional Brownian bridge B0(·).

Parameter stability can now be visually assessed by plotting the fluctuation process. The

fluctuation process randomly varies about zero if H0 were true and measurement invariance

holds. However, in the case of measurement non-invariance, the process systematically

deviates from zero. Figure 1 provides an illustration.
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Figure 1
Visualization of empirical fluctuation processes for two exemplary parameters. The dotted
line represents the cumulative scores for a parameter with a random fluctuation around
zero; thus, the fit for that parameter does not depend on the auxiliary variable. The solid
line represents a systematic fluctuation coinciding with the auxiliary variable; measurement
invariance for this parameter is violated.

The cumulative scores are combined into a test statistic in the third and final step.

The cumulative scores can be combined in various ways (Merkle and Zeileis, 2013; Hjort

and Koning, 2002). We will denote the fluctuation process at an observation i for a

parameter θ̂j with Bij, i.e., Bij = B(t = i
n
; θ̂j). Next, we introduce the three test statistics
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that are commonly used in literature: The double maximum statistic (DM), the

Cramér-von Mises statistic (CvM), and the maximum Lagrange Multiplier statistic

(maxLM).

DM = max
i=1,...,n

max
j=1,...,k

|Bij| (2)

CvM = n−1
n∑
i=1

k∑
j=1

B2
ij (3)

maxLM = max
i=i,...,i

{ i
n

(
1− i

n

)}−1 k∑
j=1

B2
ij

 (4)

The DM statistic takes the maximum of the cumulated scores across observations and

parameters, and is used to test if any fluctuation process deviates too strongly from zero at

any time. The CvM captures fluctuations that change across a variety of observations and

parameters. Lastly, the maxLM statistic is suited if all k fluctuation processes change along

the same observation i. To circumvent precision issues, the fluctuation process’s tails are

not considered when computing the maxLM statistic. In recent applications of the SCT,

the maxLM statistic is the most popular of the three (Jones et al., 2019; Wang et al., 2018).

In null hypothesis significance testing, the test statistic computed from observed

data is compared against the sampling distribution to obtain a p-value. The asymptotic

sampling distributions of the three statistics above have been analyzed in several papers.

For example, Hjort and Koning (2002) state that CvM-type statistics follow an

approximate χ2-distribution, and Zeileis (2006) show that this is also the case for DM-type

statistics. Furthermore, Hansen (1997) and Estrella (2003) show that the sampling

distribution of maxLM-type statistics also approximates a χ2-distribution. In sum, the

sampling distribution of all three statistics converges to a χ2-distribution in the large

sample limit. There have been different suggestions to set the degrees of freedom of these

limiting distributions. It depends on the number of parameters and the point where the

focal parameter changes value in a non-trivial way. For specific combinations of test
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statistic, number of parameters, and change-point, tables with critical values can be found

in Andrews (1993), Hansen (1997), and Estrella (2003). An alternative, more general

procedure is to produce a sampling distribution by first simulating observations from a

Brownian bridge and then computing the relevant statistic from the generated data

(Andrews, 1993; Zeileis, 2006). This is currently the most popular method for determining

the sampling distribution and the one we will use here.

Small Sample Behavior of the Structural Change Test

While the SCT’s large sample behavior has been extensively studied, this is not the

case for its behavior in small samples. To the best of our knowledge, only one study looked

at the probability of a type 1 error of the SCT in small samples. Jones et al. (2019)

simulated data for Gaussian Graphical models and looked at the type 1 error, altering

sample size, network size, and invariance violation. Their simulations indicated that the

type 1 error decreased with increasing model complexity; surprisingly, the type 1 error was

always below their significance level. However, Jones et al. (2019) did not assess the

assumptions that underly the SCT in their study, i.e., if the sampling distribution was

properly specified. We turn to this analysis next.

We will analyze the SCT’s behavior for two models: A simple linear regression

model and a more complex Gaussian graphical model (GGM). Our simulations vary the

sample size n and the covariates/nodes in the models. For linear regression, we simulated

models with two, four, and eight covariates for 50, 200, and 1000 observations each. For

the GGM, we simulated networks with five, ten, and fifteen nodes for 200, 500, and 2000

observations. Each combination was run 5,000 times. Datasets were simulated as a

multivariate normal distribution N (µ,Σ) with a sparse interaction matrix Σ (i.e.,

probability of interaction was 0.2) without any dependency on an auxiliary variable. Thus,

data were generated under the null-hypothesis of measurement invariance. All simulations

were run in the software R (R Core Team, 2020); the SCT was conducted using the
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strucchange function for the linear regression model (Zeileis et al., 2002) and the

partykit::mob function for the GGM (Zeileis et al., 2008; Hothorn and Zeileis, 2015).
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Figure 2
Empirical cumulative distributions for the p-value under the null-hypothesis for different
models and simulation settings. The top row shows the linear regression model results and
the bottom row of the results for the GGM. In each plot, the black, dashed line represents
the expected uniform distribution.

We will focus here on the results for the maxLM statistic and report the results for

the CvM and DM statistics in the online appendix.1 The simulated p-value distributions

are shown in Figure 2. The p-value is expected to follow a uniform distribution under the

null hypothesis, which is indicated with the dashed, black line in each of the plots in Figure

2. Observe that the p-values do not follow this uniform distribution for the linear

regression model in the smaller sample sizes but approximate a uniform distribution if the

1 The code, simulation results and online appendix can be found on the project repository
https://github.com/KarolineHuth/sctpermutation.

https://github.com/KarolineHuth/sctpermutation
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Figure 3
Distributions of the maxLM statistic under the null hypothesis for the linear regression
model. The expected sampling distribution is depicted as a black line and was obtained by
simulating observations from a Brownian bridge and applying the maxLM statistic to them
(e.g., see Zeileis (2006)).

sample size increases. For the GGM, the p-value is nearly uniformly distributed in small

networks for all sample sizes. However, for larger networks, the p-value distribution

deviates. A result that appears to be independent of the sample size used in our

simulations. The deviation between the simulated p-value distribution and the correct

uniform distribution is largest for networks with 15 nodes and 200 observations. However,

even with 2000 observations, the p-value does not follow a uniform distribution. In sum,

the p-value is not necessarily uniformly distributed under the null hypothesis in finite

samples, and the deviation between its distribution from the correct uniform distribution

increases with model complexity.

The simulated sampling distribution are shown in Figure 3 for the linear regression

model and in Figure 4 for the GGM. The asymptotic sampling distributions are indicated
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Figure 4
Distributions of the maxLM statistic under the null hypothesis for the GGM. The expected
sampling distribution is depicted as a black line and was obtained by simulating
observations from a Brownian bridge and applying the maxLM statistic to them (e.g., see
Zeileis (2006)).

with a black solid line in these graphs. They were generated by repeatedly simulating

values from a Brownian bridge and then computing the statistic on the generated data

(e.g., see Andrews, 1993; Zeileis, 2006). It is clear that for the linear regression model, the

sampling distribution is specified correctly for larger sample sizes, independent of model

complexity, but not for smaller sample sizes. For the GGM, the sampling distribution is

properly specified for small networks, but large discrepancies are found for larger networks.

In computing the maxLM statistic, a choice is made to cut off the empirical

fluctuation process’s tails to avoid precision issues. The choice of cut-off points is not

arbitrary as it can have a large impact on the obtained sampling distributions. By

cherrypicking the cut-off points, we could, in principle, improve the fit of the estimated
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sampling distribution. Unfortunately, we do not know which cut-off values will lead to a

good approximation a priori. For the GGM we chose to cut off the process’s tails before np

and after n− np observations, respectively, where np denotes the number of free parameters

in the model. These cut-off points were also used by (Jones et al., 2019). For the linear

model, which has few free parameters, we chose to cut-off the bottom and upper 10%.

In sum, the p-value and test statistic do not follow the expected distributions in

finite samples for the simple linear regression model and the more complex GGM. This

problem was especially pronounced for small sample sizes in combination with complex

models. The distribution of the p-value and the test statistic deviate from their expected

distributions since the fluctuation process does not sufficiently approximate a Brownian

bridge in small samples. The formal derivations of the error in this approximation is

detailed in the Appendix. If the fluctuation process does not approximate a Brownian

bridge, the sampling distribution is unjustified (Zeileis, 2006; Estrella, 2003; Hansen, 1997;

Hjort and Koning, 2002) and the reported p-value is wrong. Conclusions drawn from the

SCT in finite samples are therefore incorrect. To overcome this problem, we introduce an

alternative approach to obtain the sampling distribution. Our approach will allow the use

of the SCT in finite samples, even for complex models.

A Monte Carlo Permutation Approach to the Structural Change Test

Permutation testing is a popular nonparametric method for statistical testing if

distributional assumptions are not met. In permutation tests, first introduced by Fisher

(1951), sampling distributions are obtained by calculating the test statistic values under all

possible rearrangements of the observed data points. Applied to the SCT, it would thus

consider all n! rearrangements of the auxiliary variable v, and then compute a test statistic

for every possible arrangement. Since the labels are exchangeable under the SCT’s null

hypothesis, the permutation test approach provides exact significance levels (Kaiser, 2007).

Compared to parametric tests (e.g., the t-test, or F-test), permutation tests are equally
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powerful in large samples (Bickel and van Zwet, 2012); however, permutation approaches

might be more powerful if the assumptions of the parametric tests are not met. There are

also relatively few assumptions that underlie permutation tests: The underlying

distribution is symmetric and/or the alternative hypothesis states simple shifts in

parameter values (Good, 1993). However, the permutation approach’s major drawback is

that recomputing the statistic for all possible rearrangements can become unwieldy. A

Monte Carlo approach, in which possible rearrangements are randomly sampled, has been

proposed to overcome the exact permutation tests’ computational burden and provide an

approximate permutation test (Kaiser, 2007). We will use the approximate permutation

test approach and illustrate that it provides accurate sampling distributions, even for small

sample sizes and complex models.

The Monte Carlo permutation approach to the SCT comprises three steps. The test

statistic for the original dataset is computed in the first step. We will consider the maxLM

test statistic in Eq. (4) here. In the second step, we randomly rearrange the values of the

grouping variable v. For example, say we have an original dataset with six observations

belonging to two subgroups (i.e., Group A: 1, 2, and 3; Group B: 4, 5, and 6). After

rearranging, observations three, four, and six might now belong to Group A and

observations one, two, and five to Group B (i.e., Group A: 3, 4, and 6; Group B: 1, 2, 5).

The maxLM test statistic is computed for every random rearrangement. We have used

1,000 random rearrangements in our simulations. It gave a good trade-off between

accuracy and computation speed; however, the more samples are obtained, the more

accurate the determined p-value. In the final step, we estimate the p-value by calculating

how many resampled test statistics were larger than the original statistic.

We revisit the previous section’s simulations to illustrate the SCT’s behavior when

combined with the Monte Carlo permutation test approach. The results are shown in

Figure 5. It is evident that the p-values now nicely follow a uniform distribution in all

simulation setups. No differences can be found depending on sample size or model
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Figure 5
Empirical cumulative distributions for the p-value under the null hypothesis using the
permutation approach. The top row shows the linear regression model results and the
bottom row the results for the GGM. In each plot, the black, dashed line represents the
expected uniform distribution.

complexity. Therefore, we conclude that the Monte Carlo permutation approach is a

valuable method to obtain the SCT’s p-value, particularly for complex models and small

sample sizes.

Conclusion

This paper has shown that the Structural Change test’s (SCT’s) small sample

behavior can be problematic, but this issue can be resolved using a Monte Carlo

Permutation test approach. Specifically, we illustrated that the sampling distribution is

misspecified in small samples and for complex models, which leads to an incorrect p-value

in practice. The SCT assumes that the accumulation of scores for a parameter across
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observations resembles a Brownian bridge, a property that holds for large samples but not

for small samples (as shown in the Appendix). As a result, standard methods that rely on

this asymptotic property cannot determine the SCT’s correct sampling distribution. The

permutation test approach is a simple but effective nonparametric method to calculate the

sampling distribution when distributional assumptions cannot be met. We have

successfully used a Monte Carlo permutation test approach to estimate the correct

sampling distribution. As a result, correct p-values can be determined using this

approximate permutation version of the SCT, even for small samples and complex models.
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Appendix

The Error in the Brownian Bridge Approximation of Empirical Fluctuation Processes

We derive the error associated with the Brownian bridge approximation of the fluctuation

process. First, we introduce the derivation of this approximation as shown in Hjort and

Koning (2002). Second, we derive the error associated with the approximation, the

Lagrange remainder in the Taylor approximation. This error is bounded by 1/
√
n.

The Cumulative Score Process

Let s(yi, θ) denote the first-order derivative of the log-likelihood function g with

respect to θ —the score— and i(yi, θ) the second-order derivative. To determine whether

scores fluctuate along a third variable of interest (e.g., gender, time), we compute the

cumulative sum of the score:

Ψ(t; θ0) = 1√
n

bntc∑
i=1

s(yi, θ0),

where bntc is the floor function of n× t - index n the sample size and index t a fraction of

all n participants (i.e., t = i/n for i = 1, . . . , n). Here, θ0 describes the parameter estimate

under the null-hypothesis. The mean of the cumulative score process is zero and the

variance the information matrix J = −E(i(yi, θ0)). Given the Donsker and Cramér-Wold

Theorem, one can derive

Ψ(t; θ0) d−→ Z0(t) in Dp[0, 1],

where Z0(t) is a zero-mean Gaussian, which is a linear transformation of independent

Brownian motions (Hjort and Koning, 2002). This convergence takes place in the the space

Dp[0, 1] thus for t being in the range zero to one (i.e., t ∈ [0, 1]).
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The Estimated Cumulative Score Process

Given that θ0 is commonly unknown, we use the maximum likelihood estimator

(MLE) – θ̂ – and calculate the cumulative score process as

Ψ(t; θ̂) = 1√
n

bntc∑
i=1

s(yi, θ̂).

For MLE estimators the cumulative score process is bounded at zero, both at t = 0 and

t = 1. Using a Taylor expansion up to the first-order derivative, e.g., which for a function f

would be,

f(θ̂) = f(θ0) + f ′(θ0)(θ̂ − θ0),

Hjort and Koning approximate the cumulative score process for θ̂ near θ0 as

Ψ(t; θ̂) .= 1√
n

bntc∑
i=1

s(yi, θ0) + 1√
n

bntc∑
i=1

i(yi, θ0)(θ̂ − θ0)

where .= denotes an approximate equation. The linear approximation using the first and

second-order derivative at θ0 tends to approximate the cumulative score process of θ̂ in

probability. Hjort and Koning use this Taylor expansion to derive a canonical monitoring

process that approximates several independent Brownian bridges under the null-hypothesis

(see Hjort and Koning, 2002, , Eqs. (2.3) and (2.4), p. 116).

The Approximation Error

Hjort and Koning ignore the Lagrange remainder of the Taylor expansion. The

Lagrange remainder characterizes the error associated with the approximation of θ̂. The

full Taylor expansion for a function f is commonly written as:

f(θ̂) = f(θ0) + f ′(θ0)(θ̂ − θ0) + E2(θ),
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where E2(θ) denotes the Lagrange remainder. It can be described by:

E2(θ) = f
′′(θs)
2 (θ̂ − θ0)2,

for θs between θ0 and θ̂. More specifically, the full Taylor expansion for the cumulative

score process is:

Ψ(t; θ̂) = 1√
n

bntc∑
i=1

s(yi, θ0) + 1√
n

bntc∑
i=1

i(yi, θ0)(θ̂ − θ0) + 1
2
√
n

bntc∑
i=1

j(yi, θs)(θ̂ − θ0)2,

where j(yi, θ) denotes the third-order derivative of the log-likelihood function g.

We will next assess the Lagrange remainder and discuss both factors composing the

error (i.e., (θ̂ − θ0)2 and f ′′(θs)). First, we evaluate (θ̂ − θ0)2. Note that θ0 denotes the

parameter estimate under H0 : θ1 = . . . = θn. Since θ0 is unknown, we use its MLE – θ̂.

Observe that in this case (θ̂ − θ0)2 is the standard error of the approximation and thus for

an unbiased or asymptotically unbiased estimator it holds that (θ̂ − θ0)2 = Op(1/
√
n).

Here, Op is the Big-O in probability notation for random variables Xn and set of constants

mn. The notation Xn = Op(mn) states that there is a finite, positive M and a n0 such that

P (|Xn/mn| > M) < ε for all n > n0 and any positive ε. Thus, (θ̂ − θ0)2 is bounded by

1/
√
n.

Second, we evaluate f ′′(θs) which comprises the individual third-order derivatives

j(yi, θs) of the log-likelihood function g. To illustrate this derivative, we assume g is part of

the exponential family:

p(x | η) = h(x)eηTt(x)−A(η),

where h(x) denotes the base function, η the natural parameter of the model, t(x) denotes

the sufficient statistic, and A(η) the log-normalizing constant —
∫
x h(x) exp(ηᵀt(x))dx—

that ensures that the density integrates to one. The first-, second-, and third-order
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derivatives of exponential family distributions w.r.t. the natural parameter are

∂p(x | η)
∂ηi

= h(x)eηTt(x)−A(η)
(
t(x)i −

∂

∂ηi
A(η)

)
,

∂2p(x | η)
∂2ηi

= h(x)eηTt(x)−A(η)

(t(x)i −
∂

∂ηi
A(η)

)2

+ ∂2

∂2ηi
A(η)

 ,
∂3p(x | η)
∂3ηi

= h(x)eηTt(x)−A(η)

×

(t(x)i −
∂

∂ηi
A(η)

)(t(x)i −
∂

∂ηi
A(η)

)2

− 3 ∂2

∂2ηi
A(η)

− ∂3

∂3ηi
A(η)

 .

The third-order derivative consists of two parts h(x)eηTt(x)−A(η) and everything inside the

bracket. Note that the first part is the distribution itself and is bounded to lie between zero

and one. Therefore, we need to take a closer look at the second part, which mainly depends

on the derivatives of A(η). It is a convenient feature of the exponential family distributions

that the moments of the sufficient statistics can be derived from the derivatives of A(η).

We will show this for the first moment, but it can be shown for all other moments.

∂

∂ηi
A(η) = ∂

∂ηi

{
log

∫
h(x)eηTt(x)dx

}

=
∫
t(x)ih(x)eηTt(x)dx∫
h(x)eηTt(x)dx

=
∫
t(x)ih(x)eηTt(x)−A(η)dx

= E[t(x)i]

Thus, if the moments of the specific exponential family distribution are bounded the third

order derivative is bounded and f ′′(θ̂) = O(1).

Taking everything together – (θ̂ − θ0)2 = Op(1/
√
n) and f ′′(θ̂) = O(1) – we obtain:

Ψ(t; θ̂) = 1√
n

bntc∑
i=1

s(yi, θ0) + 1√
n

bntc∑
i=1

i(yi, θ0)(θ̂ − θ0) +Op
(

1√
n

)
.



SCT IN FINITE SAMPLES 25

This shows that the approximation error depends on the sample size, and the error will be

larger for smaller samples. The approximation error tends to zero as the sample size grows.

If the sample size is sufficiently large, the calculations of Hjort and Koning hold.
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