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Abstract
Hypotheses concerning the distribution of multinomial proportions typically

entail exact equality constraints that can be evaluated using standard tests.

Whenever researchers formulate inequality constrained hypotheses, however,

they must rely on sampling-based methods that are relatively inefficient and

computationally expensive. To address this problem we developed a bridge

sampling routine that allows an efficient evaluation of multinomial inequal-

ity constraints. An empirical application showcases that bridge sampling

outperforms current Bayesian methods, especially when relatively little pos-

terior mass falls in the restricted parameter space. The method is extended

to mixtures between equality and inequality constrained hypotheses.

Keywords: Bayes factors, model selection, inequality constraints, Savage-

Dickey density ratio
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Introduction

In many scientific fields the analysis of categorical variables is of major importance. Appli-

cations range from the analysis of declared numeric values in forensic accounting, auditing,

and fraud detection (Nigrini, 2012; Rauch, Göttsche, Brähler, & Engel, 2011), the analysis

of descriptive measures in survey studies (e.g., Haberman, 1978; Nuijten, Hartgerink, van

Assen, Epskamp, & Wicherts, 2016; Sedransk, Monahan, & Chiu, 1985; Veldkamp, Nuijten,

Dominguez-Alvarez, van Assen, & Wicherts, 2014), the analysis of gut microbiome compo-

sition (Song, Zhao, & Wang, 2020), to the validation of model assumptions and axioms in

the field of psychometrics (see e.g., Cavagnaro & Davis-Stober, 2014; Davis-Stober, 2009;

Guo & Regenwetter, 2014; Myung, Karabatsos, & Iverson, 2005; Regenwetter, Dana, &

Davis-Stober, 2011; Regenwetter et al., 2018; Tijmstra, Hoijtink, & Sijtsma, 2015). The

breadth and depth of these examples underscore the importance of having efficient tools for

their analysis readily available.

In each of the examples above, researchers are interested in quantifying evidence for

hypotheses that impose certain restrictions on the underlying category proportions. These

hypotheses often predict that all category proportions are exactly equal (e.g., the prevalence

for a statistical reporting error is equal across different psychological journals; Veldkamp et

al., 2014), or that they are fixed and follow a specific pattern (e.g., the digit proportions

in non-fraudulent auditing data conform to Benford’s law; Benford, 1938; Nigrini, 2012).

However, research hypotheses also often stipulate ordinal expectations among category pro-

portions (e.g., students with higher abilities have a higher chance to solve any particular

item correctly; Grayson, 1988), or a mix of equality and inequality parameter constraints

(e.g., according to the recognition heuristic, when laypeople predict which sports team will

win a tournament they assign a higher probability of winning to more familiar teams and

equal but lower probabilities to unknown teams; Goldstein & Gigerenzer, 2002).

Ordinal expectations about underlying category proportions are a regular occurrence

in scientific theories. However, the evaluation of hypotheses that go beyond exact equality

constraints is not very popular, particularly among researchers who use frequentist statis-
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tics (Iverson, 2006). As motivating example, consider the study conducted by Uhlenhuth,

Lipman, Balter, and Stern (1974), who surveyed 735 adults to investigate the association

between symptoms of mental disorders and experienced life stress. To measure partici-

pants’ life stress, the authors asked them to indicate, out of a list of negative life events, life

stresses, and illnesses, which event they had experienced during the last 18 months prior to

the interview. A subset of these data was reanalyzed by Haberman (1978, p. 3). Haber-

man noted that retrospective surveys tend to fall prey to the fallibility of human memory,

causing participants to report primarily those negative events that happened most recently.

He therefore investigated the 147 participants who reported only one negative life event

over this time span and tested whether the frequency of the reported events was equally

distributed over the 18 month period. However, Haberman did not directly test the ordinal

pattern implied by his assumption of forgetting, namely that the number of reported nega-

tive life events decreases as a function of the time passed. Figure 1 shows the frequency of

reported negative life events in Haberman’s sample.
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Figure 1 . Frequency of reported negative life events over the course of the 18 months prior
to the interview for Haberman’s (1978) sample of the data collected by Uhlenhuth et al.
(1974).

To evaluate ordinal multinomial patterns such as the one hypothesized by Haberman

(1978) we focus on Bayesian methods. In the Bayesian statistical framework, researchers
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may quantify the evidence for or against a specific restriction on the model parameters using

the Bayes factor (Jeffreys, 1935; Kass & Raftery, 1995), that is, the relative predictive

performance of the models with and without the restriction. For the usual scenario of

equal or fixed underlying category proportions, the Bayes factor is available analytically.

This is not the case, unfortunately, when inequality constraints are in play. In these cases,

the Bayes factor can be approximated using popular methods such as the encompassing

prior approach (Gu, Mulder, Deković, & Hoijtink, 2014; Klugkist, Kato, & Hoijtink, 2005;

Hoijtink, Klugkist, & Boelen, 2008; Hoijtink, 2011) or the conditioning method (Mulder

et al., 2009, 2009; Mulder, 2014, 2016). As we will show in the following sections, these

methods estimate the Bayes factor by approximating the relative mass of the restricted

parameter space through samples from the unrestricted distribution. Thus, they allow

for convenient computations of Bayes factors. However, both methods have in common

that the approximation of the Bayes factor becomes harder (i.e., more time-consuming and

less accurate) as researchers are interested in a smaller part of the parameter space. The

problem in these cases is that the probability of samples falling within the parameter space

of the restricted distribution is very low, making it practically impossible to obtain accurate

estimates of the Bayes factor by sampling from the unrestricted distribution. To illustrate

this problem, consider a model with K = 9 categories, as is used, for example, in Benford

tests to assess whether or not observed frequencies of leading digits (e.g., in auditing data)

are manipulated or otherwise of poor quality (Nigrini, 2012). The hypothesis that the

numbers are not manipulated predicts a decreasing trend in the proportions of the leading

digits in accordance with Benford’s law, that is θ9 < θ8 < · · · < θ1. When drawing samples

from a uniform prior for the K = 9 category probabilities, only 1 in 362, 880 samples will

obey the restriction, since θ9 < θ8 < · · · < θ1 is one of 9! ways in which 9 proportions can

be ordered. When the prior proportion consistent with the restriction is so low, posterior

samples in line with the restriction have a large impact on the Bayes factor. When we take

362, 880 posterior draws, the Bayes factor equals the number of samples that fall in the

restricted area; thus, 5 posterior samples in the restricted area yields a Bayes factor of 5
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in favor of the ordinal pattern of Benford’s law, whereas 10 posterior samples in that area

yield a Bayes factor of 10. This illustrates that in order to obtain a precise estimate of

the Bayes factor, researchers need to draw millions of samples from the posterior. These

ratios become increasingly problematic as the models become more complex (Sedransk et

al., 1985; Mulder et al., 2009).

To overcome the above limitation we present a bridge sampling routine (e.g., Gronau

et al., 2017; Meng & Wong, 1996) to estimate the Bayes factor for multinomial inequality

constraints. The advantage of the bridge sampling routine is that its efficiency does not

suffer when the size of the restricted parameter space decreases. The resulting Bayes factor

estimates are relatively unbiased and precise. In addition, the bridge sampling approach

has a fixed cost in terms of runtime, which makes it appealing for the implementation in

standard statistical software packages.

The outline of this paper is as follows. First, we introduce the basic theoretical

concepts of Bayesian parameter estimation and the computation of Bayes factors for the

multinomial model featuring equality constrained hypotheses. We then extend these con-

cepts to inequality constrained hypotheses. Third, we show how the bridge sampling ap-

proach compares to the established methods such as the encompassing prior approach and

the conditioning method in terms of precision and efficiency by applying the methods to

our motivating example. The last section contains a short discussion and the appendix

generalizes the proposed methodology to a mixture of equality and inequality constrained

hypotheses.

Bayesian Analysis of Multinomial Variables

This section introduces the theoretical concepts of Bayesian inference for the multinomial

model, that is, Bayesian parameter estimation using posterior distributions and Bayesian

hypothesis testing using Bayes factors. We denote the number of observations in a category

k with xk, and the total number of observations with N =
∑K
k=1 xk. The multinomial

distribution is a generalization of the binomial distribution to variables that can take values
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in K ≥ 2 categories, and it assigns the following probabilities to the different ways that N

observations distribute across the K categories,

p(x | θ) = p(x1, x2, . . . , xK | θ1, θ2, . . . , θK) =
(

N

x1, x2, . . . , xK

)
K∏
k=1

θxkk ,

where the first factor in the likelihood denotes an extension of the binomial coefficient

known as the multinomial coefficient. The parameters of the multinomial model, θk, reflect

the probability of observing a value in a particular category, and need to sum to one.

Note that due to the sum-to-one constraint, the K-th parameter is sometimes expressed as

θK = 1−
∑K−1
k=1 θk.

Bayesian Parameter Estimation Without Inequality Constraints

Bayesian parameter estimation concerns the expression of a posterior distribution for model

parameters capturing a priori information and information from the data (i.e., the likeli-

hood). For the vector of probability parameters, θ = (θ1, θ2, . . . , θK), we choose a Dirichlet

distribution with concentration parameters (α1, α2, . . . , αK), where each element in α is

larger than zero:

p(θ) = p(θ1, θ2, . . . , θK) =
Γ
(∑K

k=1 αk
)

∏K
k=1 Γ(αk)

K∏
k=1

θαk−1
k .

The concentration parameters αk of the Dirichlet distribution have an intuitive interpreta-

tion: they may be interpreted as a priori category counts, and their exact values determine

both the relative values of category probabilities and their variability. For the problem at

hand, the posterior is also a Dirichlet distribution of the form

p(θ | x) =
Γ
(
N +

∑K
k=1 αk

)
∏K
k=1 Γ(xk + αk)

K∏
k=1

θxk+αk−1
k ,

with the updated concentration parameters α′k = xk + αk (O’Hagan & Forster, 2004). The

concentration parameters of the posterior Dirichlet distribution can be interpreted as a
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posteriori category counts, the sum of the prior and observed category counts.

Bayes Factor Hypothesis Testing Without Inequality Constraints

When stipulating exact equality constraints on the parameters of interest, researchers for-

mulate a point null hypothesis H0 that assigns expected values c to the underlying category

proportions θ, that is H0 : θ = c. We first consider the Bayes factor

BF0e = p(x | H0)
p(x | He)

,

where the hypothesis H0 stipulates exact values for all of the model parameters, i.e., H0 :

θ = c. In the standard multinomial test the null hypothesis states that all model parameters

are exactly equal, thus, all elements in c are set equal to 1/K. We test the null hypothesis

against the encompassing hypotheses which states that all category proportions are free to

vary without any ordinal restrictions. We call this hypothesis the encompassing hypothesis

He, since it encompasses all possible orders of the parameters. The parameter space of the

encompassing hypothesis is denoted as Re. When stipulating exact equality constraints, it

is assumed that there is no prior uncertainty about the model parameters, and the marginal

likelihood of the null hypothesis is simply a multinomial distribution. Due to the conjugacy

of the Dirichlet distribution to the parameters of the multinomial model, the marginal

likelihood for the encompassing hypothesis has a simple, closed-form solution. Thus, if all

model parameters of the null hypothesis are a priori specified, the Bayes factor BF0e is

equal to

BF0e =
K∏
k=1

cxkk ×
∏K
k=1 Γ (αk)

Γ
(∑K

k=1 αk
) × Γ

(
N +

∑K
k=1 αk

)
∏K
k=1 Γ (αk + xk)

,

as derived already by Good (1967). There is another way to express the Bayes factor, which

relates the Bayes factor to Bayesian parameter estimation. By rearranging Bayes’ rule the

marginal likelihood of the encompassing hypothesis can be expressed as:
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p(x | He)︸ ︷︷ ︸
marginal
likelihood

of He

=

likelihood︷ ︸︸ ︷
p(x | θ, He)

prior
density︷ ︸︸ ︷

p(θ | He)
p(θ | x, He)︸ ︷︷ ︸

posterior
density

,

which is known as Chib’s identity (Chib, 1995). Chib’s identity allows us to arrive at an

alternative characterization of the Bayes factor that only requires the prior and posterior

distribution under the alternative hypothesis at c:

BF0e = p(x | H0)
p(x | He)

= p(x | θ = c, He)
p(x|θ=c, He) p(θ=c|He)

p(θ=c|x, He)

=

Height of posterior density of He
at θ = c︷ ︸︸ ︷

p(θ = c | x,He)
p(θ = c | He)︸ ︷︷ ︸

Height of prior density of He
at θ = c

.

This expression is known as the Savage-Dickey density ratio (Dickey & Lientz, 1970;

O’Hagan & Forster, 2004; Dickey, 1971; Verdinelli & Wasserman, 1995). The underly-

ing principle of the Savage-Dickey density ratio is to compute the Bayes factor by dividing

the height of the posterior density under He at the point of interest (i.e., c) by the height

of the prior density under He at the same point.

For concreteness, we will demonstrate the Bayesian multinomial test for exact equality

constraints by reanalyzing the research question of Habermann (1978). The null hypothesis

entails that the probability of reporting a negative life event is equally distributed over the

18 months prior to the interview. In particular, the expected category proportions under

H0 are

c : θ1, θ2, · · · , θK = 1/K.

Assuming that every parameter value is equally likely before we see any data, we assign a

uniform prior distribution across the parameter vector θ, such that, p(θ | He) ∼ Dirichlet(α)

with all concentration parameters set to 1. Using the observed frequencies from Haberman
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(1978), that is,

x = (15, 11, 14, 17, 5, 11, 10, 4, 8, 10, 7, 9, 11, 3, 6, 1, 1, 4)′,

the Bayes factor in favor for the encompassing hypothesis is:

BF0e =
p(θ = c | x,He)
p(θ = c | He)

=

Γ
(∑K

k=1 αk + xk
)

∏K
k=1 Γ(αk + xk)

∏K
k=1 θ

xk+αk−1
k

Γ
(∑K

k=1 αk
)

∏K
k=1 Γ(αk)

∏K
k=1 θ

αk−1
k

=
1

27.1.

This result indicated that the data are about 27 times more likely under He (in which the

parameters are free to vary) than under H0 (in which the parameters are constrained to be

equal).

We have now outlined how to express the prior and posterior distribution for the

multinomial model using a Dirichlet prior and expressed the Bayes factor in terms of the

change of belief about the parameter value. A related expression for the Bayes factor can

be derived in the case of inequality constraints, to which we turn next.

Bayesian Parameter Estimation With Inequality Constraints

When stipulating inequality-constrained hypotheses we can predict, for instance, an increas-

ing trend of the first two categories, Hr : θ1 < θ2. We refer to such inequality-constrained

hypotheses as Hr. Here, the parameter space, Rr is a subset of Re by restrictions imposed

on θ, that is, Rr = {θ ∈ Re ; Hr}. The prior and posterior distributions of the parameters

subject to an inequality-constrained hypothesis Hr thus take the following form:

p(θ | Hr) = p(θ | He) I(θ ∈ Rr)
p(θ ∈ Rr | He)

(1)

p(θ | x, Hr) = p(θ | x, He) I(θ ∈ Rr)
p(θ ∈ Rr | x, He)

, (2)
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where I(θ ∈ Rr) is an indicator function that is one for parameter values θ in the restricted

space Rr and zero otherwise. As apparent from the equations above, the prior and posterior

distributions under an inequality-constrained hypothesis are proportional to their uncon-

strained counterparts. In principle, whenever the concentration parameters in the Dirichlet

distribution are natural numbers for every k, thus, αk ∈ N, we are able to achieve an exact

result for the normalizing constants for the restricted prior and posterior distribution (see

our online appendix for a description of the exact procedure). However, for general α an

exact result is not expected. Furthermore, the exact procedure is far more inefficient than

sampling-based methods, especially as the number of categories in the model and the num-

ber of observations for a fixed K increases. Here, we were only able to obtain exact results

for simple cases, involving models with no more than K = 6 categories and no more than

N = 63 observations. For this reason, in the following we limit our descriptions of Bayesian

parameter estimation and the computation of Bayes factors to sampling-based procedures.

In general researchers rely on Monte Carlo sampling methods to compute the normal-

izing constants of the restricted prior and posterior distribution. In the simplest case we

can use rejection sampling to simulate values from the unconstrained prior and posterior

distributions and only keep those values that conform to the restrictions. The proportion

of the retained samples to the total number of samples is then an approximation for the

normalizing constant of the restricted distribution. Unfortunately, when many inequality

constraints are proposed, the approach outlined above, although intuitive, can be terribly

inefficient. For instance, in the Haberman example, when drawing from a uniform prior

only 1 in over 18! = 6.4 × 1015 samples will obey the restriction. As an alternative, we

can use a Markov chain Monte Carlo (MCMC) approach, that allows us through random

variable transformation to simulate the values directly from the constrained distribution.

Devroye (1986, p. 594), for instance, shows that one can simulate values from a Dirichlet

distribution by first simulating K independent random variables γk with a Gamma(αk, 1)
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density, for k = 1, . . . , K, and then setting

θk = γk∑K
k=1 γk

.

The variables θk that are generated in this way follow the desired Dirichlet(α) distribution.

Note that with the transformation from θ to γ the sum-to-one constraint is conveniently

removed. Additionally, this MCMCmethod is suitable for drawing values from the restricted

distribution because the transformation between θ and γ is order-preserving. Thus, an

inequality-constrained hypothesis Hr : θ1 < θ2 on the category probabilities translates into

the inequality-constrained hypothesis Hr : γ1 < γ2 on the gamma variables. If we simulate

the gamma variables consistent with the order restrictions imposed byHr, that is, p(γ | Hr),

the transformed gamma variables then generate Dirichlet variables that are consistent with

Hr, that is, p(θ | Hr).

To draw gamma variables that obey the order imposed by the inequality-constrained

hypotheses we use the Gibbs sampling algorithm proposed by Damien and Walker (2001).

Their Gibbs sampling algorithm assumes fixed upper and lower bounds for each parameter.

However, the algorithm can easily be generalized to cases where we wish to draw from

gamma variables whose upper and lower bounds are not known, but are itself random

variables (as it is the case for inequality-constrained hypotheses).

Instead of simulating values directly from the multivariate distribution of gamma

variables that are subject to inequality constraints —p(γ | Hr)—, the Gibbs sampler oper-

ates by iteratively simulating values from the full-conditional posterior distributions, that

is, the distribution of one gamma variable given the remaining gamma variables and in-

equality constraints —p(γk | γ(k), Hr), where γ(k) refers to the vector of gamma variables

with the kth parameter removed. If there is no constraint on a gamma variable γk then

the full conditional is simply the regular Gamma(αk, 1) density. However, if γk is subject

to a constraint, for instance, γj < γk < γq, then the gamma variable γk has the bounded

support [γj , γq] instead of [0, ∞). This implies that the full conditional distribution of γk
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subject to an inequality constraint is a truncated gamma distribution:

p(γk | γ(k), Hr) = p(γk | γj < γk < γq) =
1

Γ(γk) γ
αk−1
k e−γk I(γk ∈ [γj , γq])
p(γk ∈ [γj , γq])

.

For gamma variables with bounded support [γj , γq], the bounds at iteration t are calculated

using the current values of the parameters. After the gamma variables have been simulated

in this manner, they can be transformed back into category probabilities to obtain samples

from the Dirichlet distribution. We provide the R code for the implementation of the Gibbs

sampling algorithm in Appendix C.

Bayes Factor Hypothesis Testing for Inequality Constraints

We consider the Bayes factor

BFre = p(x | Hr)
p(x | He)

,

where the hypothesis Hr stipulates inequality constraints on the model parameters, for

instance,

Hr : θ1 < · · · < θK .

In order to obtain the marginal likelihood of the inequality-constrained hypothesis we need

to integrate over the restricted parameter space Rr, which makes the Bayes factor BFre

difficult to compute:

p(x | Hr) =
∫
Re

p(x | θ) p(θ | Hr) dθ.

It is nevertheless possible to arrive at an intuitive expression of the Bayes factor. This

expression is a generalization of the Savage-Dickey density ratio mentioned above and follows

from an alternative characterization of p(x | Hr):
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p(x | Hr) =
∫
Re

p(x | θ, He) p(θ | Hr) dθ

=
∫
Re

p(x | θ, He)
p(θ | He) I(θ ∈ Rr)
p(θ ∈ Rr | He)

dθ,

where p(θ ∈ Rr | He) does not depend on θ. Since p(x | θ, He)p(θ | He) = p(θ | x, He)p(x |

He), we obtain the following result:

p(x | Hr) =
∫
Re

p(θ | x, He) p(x | He)I(θ ∈ Rr) dθ
1

p(θ ∈ Rr | He)

=
∫
Re

p(θ | x, He) I(θ ∈ Rr) dθ
p(x | He)

p(θ ∈ Rr | He)

= p(θ ∈ Rr | x, He) p(x | He)
p(θ ∈ Rr | He)

,

which was derived in Klugkist et al. (2005). With this characterization the Bayes factor

amounts to

BFre =

Proportion of posterior parameter
space consistent with the restriction︷ ︸︸ ︷

p(θ ∈ Rr | x, He)
p(θ ∈ Rr | He)︸ ︷︷ ︸

Proportion of prior parameter
space consistent with the restriction

. (3)

Like the Savage-Dickey density ratio, this presents the Bayes factor as the change of belief

that the parameters lie in the restricted parameter space Rr (see also Wetzels, Grasman,

& Wagenmakers, 2010 and Mulder et al., 2009). We discuss two established procedures to

approximate the Bayes factor BFre in the next section.
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Established Procedures to Estimate the Bayes Factor For Inequality-Constraints

One popular method to estimate the Bayes factor for inequality-constrained hypotheses is

the encompassing prior approach which relies on simple Monte Carlo estimates (Gelfand,

Smith, & Lee, 1992; Klugkist et al., 2005; Sedransk et al., 1985). This method estimates

the Bayes factor in Equation 3 by considering the proportion of the prior and posterior dis-

tributions of the unrestricted distribution that are in agreement with the constraints. That

is, the numerator can be estimated by sampling from the encompassing posterior density

and then calculating the proportion of draws in accordance with the restrictions imposed

by the inequality-constrained hypothesis. Likewise, the denominator can be estimated by

sampling from the encompassing prior density and then calculating the proportion of draws

in accordance with the restrictions:

BFre =
p(θ ∈ Rr | x, He)
p(θ ∈ Rr | He)

≈
1
S

∑S
s=1 I(θ′s ∈ Rr)

1
S

∑S
s=1 I(θ∗s ∈ Rr)

,

where θ∗s and θ′s denote the s-th sample from the encompassing prior and posterior distri-

bution, respectively, for samples s = 1, . . . , S. Because of the simplicity of the method,

numerous applications can be found in the literature, for example in the context of multi-

nomial models (Heck & Davis-Stober, 2019), but also applied to the analysis of contingency

tables and to the analysis of variance and covariance models (Hoijtink et al., 2008; Hoijtink,

2011; Klugkist, Laudy, & Hoijtink, 2010), item response theory (Haaf, Merkle, & Rouder,

submitted), as well as to Bayesian linear mixed models (Haaf & Rouder, 2017). However,

it is also widely recognized that this method is not particularly efficient for models with

an increasing number of constraints (Myung, Karabatsos, & Iverson, 2008; Sedransk et

al., 1985). The same holds true for models with a small number of constraints that are ex-

tremely restrictive or models for which the data do not align with the inequality-constrained

hypothesis. This is the case because the efficiency of the method relies on the relative size of
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the restricted area: if prior and posterior samples almost never fall inside the area of inter-

est, a large number of samples is required to estimate the proportions accurately (Gelfand

et al., 1992; Hoijtink, 2011).

A method that is more stable for larger models is the conditioning method (Mulder

et al., 2009; for an application to multinomial models, see Heck & Davis-Stober, 2019). The

conditioning method also utilizes the identity in Equation 3. But instead of estimating the

normalizing constants of the constrained distribution based on a single set of samples from

the encompassing distribution, Mulder et al. (2009) proposed a stepwise approach. For

instance, when evaluating a hypotheses concerning K = 4 ordered parameters Hr : θ1 <

θ2 < θ3 < θ4, the proportion of prior parameter space consistent with the restriction can be

factored as follows:

p(θ ∈ Rr | He) = p(θ1 < θ2 | He)× p(θ2 < θ3 | θ1 < θ2,He)× p(θ3 < θ4 | θ1 < θ2 < θ3,He).

The proportion of posterior samples consistent with the restriction are estimated in a similar

fashion, which yields the Bayes factor:

BFre =
p(θ ∈ Rr | x, He)
p(θ ∈ Rr | He)

=
p(θ1 < θ2 | x,He)× · · · × p(θ3 < θ4 | θ1 < θ2 < θ3,x, He)
p(θ1 < θ2 | He)× · · · × p(θ3 < θ4 | θ1 < θ2 < θ3,He)

,

where each Bayes factor is estimated independently. By evaluating the constraints sequen-

tially, the conditioning method yields better results for models featuring larger numbers

of constraints (Mulder et al., 2009). A similar method was proposed to evaluate almost-

equality constraints: using the transitivity property of the Bayes factor, Laudy (2006, p.

115) and Klugkist (2008) proposed to approximate the Bayes factor for almost-equality con-

straints by evaluating a series of hypotheses of increasing narrowness, such that for each pair
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of parameters θ1 ≈ θ2 the distance between the them approaches zero (i.e., | θ1− θ2 |→ 0).1

However, care must be taken not to set the values for the distance | θ1− θ2 | too small, oth-

erwise there is a risk of restricting the parameter space to such an extent that the efficiency

of the method is negatively affected (Klugkist, 2008).

The increased stability of the conditioning method is accompanied by a steep in-

crease in runtime. This increase has three reasons. The first reason follows directly from

the sequential evaluation of the individual constraints. To refer again to the Haberman

example: Since the associated model features seventeen constraints, seventeen sets of prior

and posterior samples must be drawn for the evaluation. The resulting runtime is thus

seventeen times higher than that of the encompassing prior approach. The second reason

is that even though the method is more stable, there is still the risk that the relative size

of the restricted area for each individual restriction is too small to effectively sample from

it. The third reason is the implementation of the conditioning method. When evaluating

the individual constraints it is not enough to simply draw samples from the encompassing

distribution; this is only possible for the first constraint. For each additional constraint,

samples are drawn from distributions that are conditional on previous constraints, with a

new constraint added at each step. Thus, we need to draw samples from restricted distri-

butions using MCMC methods, that are slower than the standard Monte Carlo methods

used in the encompassing prior approach.

A Bridge Sampling Routine to Estimate the Bayes Factor

The main limitations of the encompassing prior approach and the conditioning method–

lack of precision, lack of scalability, and long runtimes–come from the effort to estimate

the proportion of the encompassing parameter space in accordance with the constraint.

In contrast, bridge sampling (Bennett, 1976; Meng & Wong, 1996) estimates normalizing

constants using a different approach. The basic principle of bridge sampling is that the

ratio between two normalizing constants operating on the same parameter space can be
1Wetzels et al. (2010) showed that the proposed almost-equality constraint method approximates the

Savage-Dickey density ratio.
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estimated by the following identity:

p(x | H1)
p(x | H2) =

EH2

(
p(x | θ,H1)p(θ | H1)h(θ)

)
EH1

(
p(x | θ,H2)p(θ | H2)h(θ)

),
where the term h(θ) refers to an arbitrary bridge function that ensures that the denominator

is non-zero. Here we use a slightly modified form of the bridge identity proposed by Overstall

and Forster (2010) which estimates not a ratio but a single normalizing constant to further

increase the precision of the estimates. The modified form of the bridge identity requires

that the second distribution (denoted above as the distribution under H2) is replaced by a

distribution with sufficient overlap to the target distribution and with a known normalizing

constant. In the following, we will refer to this distribution as proposal distribution g(θ).

The modified identity then becomes:

p(x | H1) =
Eg(θ)

(
p(x | θ)p(θ | H1)h(θ)

)
EH1

(
g(θ)h(θ)

) , (4)

where p(x | H1) indicates a normalizing constant we wish to estimate, that is, the nor-

malizing constant of the constrained prior distribution, or the normalizing constant of the

constrained posterior distribution, that is, p(θ ∈ Rr | He) or p(θ ∈ Rr | x, He), respectively.

Since these normalizing constants are of the form

∫
Rr

p(θ | He) dθ and
∫
Rr

p(θ | x, He) dθ

the bridge sampler can be used to estimate them, if the support of the proposal g(θ)

is Rr. To arrive at the expression for the bridge sampling identity for the normalizing

constant of the constrained prior distribution we now simply replace the terms related to
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H1. Specifically, since

p(θ | Hr) = p(θ | He) I(θ ∈ Rr)
p(θ ∈ Rr | He)

,

we can replace the term for the unnormalized density underH1 in the numerator of Equation

4 (i.e., p(x | θ)p(θ | H1)) by the corresponding term for the constrained prior distribution,

that is, p(θ | He) I(θ ∈ Rr). Thus, the resulting bridge sampling identity can be described

as follows:

p(θ ∈ Rr | He) =
Eg(θ)

(
p(θ | He)I(θ ∈ Rr)h(θ)

)
Eprior

(
g(θ)h(θ)

) . (5)

The normalizing constant for the constrained posterior distribution can be described simi-

larly. Based on this identity, we can now define the corresponding estimator. We substitute

the expectations by sample averages, using N1 samples from the constrained prior distribu-

tion, that is, θ∗ ∼ p(θ | Hr) and N2 samples from a suitable proposal distribution, that is

θ̃ ∼ g(θ). Then, we can estimate p(θ ∈ Rr | He) by:

p̂(θ ∈ Rr | He) ≈

1
N2

∑N2
m=1 p(θ̃m | He)I(θ̃m ∈ Rr)h(θ̃m)

1
N1

∑N1
n=1 g(θ∗

n)h(θ∗
n)

. (6)

There are many possible choices for h(θ). Meng and Wong (1996) suggested the use of a

bridge function that has been shown to minimize the relative mean square error of the esti-

mate. However, when following this recommendation, the specific choice for h(θ) depends

on the unknown normalization constant:

h(θ) = c×
1

s1p(θ | He)I(θ ∈ Rr) + s2p(θ ∈ Rr | He)g(θ),
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where s1 = N1
N2+N1

, s2 = N2
N2+N1

and c is a constant that has no influence on the results. To

be able to estimate the normalizing constant of the restricted prior distribution we use the

iterative scheme proposed by Meng and Wong (1996). Thus, we yield the following formula

for the bridge sampling estimator at iteration t+ 1:

p̂(θ ∈ Rr | He)(t+1) ≈

1
N2

∑N2
m=1

`2,m

s1`2,m + s2p(θ̃m ∈ Rr | He)(t)

1
N1

∑N1
n=1

1
s1`1,n + s2p(θ∗

n ∈ Rr | He)(t)

,

where `1,n =
p(θ∗

n | He)I(θ∗
n ∈ Rr)

g(θ∗
n) and `2,m =

p(θ̃m | He)I(θ̃m ∈ Rr)

g(θ̃m)
. We then run the

iterative scheme until a predefined tolerance criterion is reached. We follow the suggestion

by Gronau et al. (2017) to use a tolerance criterion of

| p̂(θ ∈ Rr | He)(t+1) − p̂(θ ∈ Rr | He)(t) |
p̂(θ ∈ Rr | He)(t+1) ≤ 10−10,

while setting p̂(θ ∈ Rr | He)(1) = 0 as initial guess.

Transformations To Facilitate Bridge Sampling

Since the bridge function is defined on the common support of the proposal and target

distribution, both distributions have to operate on the same parameter space. In addition,

the normalizing constant of the proposal distribution must be known, which means that

we cannot choose another constrained Dirichlet distribution. To resolve this problem we

move the prior and posterior draws from the probability space to the real line using a

probit transformation. This transfomation aims to eliminate the constraints inherent to

the restricted Dirichlet distribution, namely the sum-to-one constraint and the inequality

constraints. Furthermore, the transformation enables us to choose a convenient proposal

distribution that is easy to sample from and easy to evaluate, for instance, the multivariate
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normal distribution (Overstall & Forster, 2010).

The general idea is as follows: θ is a probability vector, therefore, its elements must

sum to one. As a result, the vector is completely determined by its first K − 1 elements.

For the transformation we therefore only consider the first K − 1 elements and transform

them to K − 1 elements of a new vector ξ with ξ ∈ RK−1. To retain the inequality

constraints imposed on the parameters, we need to account for the lower bound lk and the

upper bound uk of each θk. These bounds can be determined by adapting a stick-breaking

approach (Frigyik, Kapila, & Gupta, 2010; Stan Development Team, 2020). The stick-

breaking approach represents θ as a stick of length one which we subsequently break into

K elements. Assuming θk−1 < θk, for k ∈ {1 · · · ,K}, the lower bound for any element in θ

is defined as

lk =


0 if k = 1

θk−1 if 1 < k < K.

(7)

The upper bound is defined as

uk =


1
K

if k = 1

1−
∑
j<k θj

K + 1− k if 1 < k < K,

(8)

where 1−
∑
j<k θj represents the length of the remaining stick and K+ 1−k is the number

of elements in the remaining stick. Let φ denote the density of a normal variable with a

mean of zero and a variance of one, Φ its cumulative density function, and Φ−1 its inverse

cumulative density function. Then, the transformation of θ is given by:
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ξk = Φ−1

 θk − lkuk − lk

 .

=



Φ−1

 θk

1/K

 if k = 1

Φ−1


θk − θk−1

1−
∑
j<k θj

K + 1− k − θk−1

 if 1 < k < K − 1.

The inverse transformation is given by:

θk = (uk − lk)Φ(ξk) + lk

=



1
K

Φ(ξk) if k = 11−
∑
j<k θj

K + 1− k − θk−1

Φ(ξk) + θk−1 if 1 < k < K.

In the inverse transformation θk depends only on the first k elements of ξ. Therefore, we

know that the Jacobian matrix will be lower triangular, and the determinant of the Jacobian

matrix will be the product of the diagonal entries given by:

∂θk

∂ξk
=


1
K
φ(ξk) if k = 1

(uk − lk)φ(ξk) if 1 < k < K.

Therefore, the Jacobian of this transformation is:

|J | =
1
K
φ(ξ1)

K−1∏
k=2

(
(uk − lk)φ(ξk)

)
.
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Taking this transformation into account the bridge sampling estimator computes `1,n and

`2,m as follows:

`1,n =
p(θ∗

n | He)I(θ∗
n ∈ Rr)

g(ξn∗)
,

`2,m =
p(θ̃m | He)I(θ̃m ∈ Rr)

g(ξ̃m)
,

where ξn∗ = Φ−1

θ∗
n − l

u− l

, and θ̃m = ((u− l)Φ(ξ̃m) + l) |J |).

Taken together, to apply the proposed bridge sampling routine the following three

conditions must be met. First, we need to be able to sample directly from the constrained

prior and posterior densities, which can be achieved by using the adapted version of the

Gibbs sampling method by Damien and Walker (2001) described above. Second, we need to

select a suitable proposal distribution for the bridge sampling algorithm; here we choose a

multivariate normal distribution that achieves sufficient overlap with our target distribution

by moving the samples from the restricted Dirichlet distribution to the real line. Third,

we need to choose a bridge function; here, we have chosen the bridge function proposed in

Meng and Wong (1996) which has the favorable property that it minimizes the estimated

relative mean-squared error.

Given that bridge sampling only requires draws of the restricted distribution and the

proposal distribution, this method is more efficient than the encompassing prior approach

(because fewer samples are typically needed) and the conditioning method (because fewer

instances of the Gibbs sampler are needed). In addition, the precision of the bridge sam-

pling estimator depends not on the relative size of the restricted parameter space, but on

the overlap between the target and proposal distribution; when the proposal distribution

resembles the target distribution more closely, the resulting estimates are more accurate
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(Meng & Wong, 1996).

Empirical Application: Memory of Negative Life Events

In this section we investigate the precision and efficiency of the estimation methods when

applied to a real data set published in Uhlenhuth et al. (1974). Specifically, we conduct a

Bayesian reanalysis of Haberman’s sample to test whether the reported negative life events

decrease over time as a function of forgetting. We test this inequality-constrained hypothesis

against the encompassing hypothesis without constraints:

Hr : θ1 > θ2 > · · · > θ18

He : θ1, θ2, · · · , θ18.

Method

We estimated the Bayes factor using the bridge sampling approach, the encompassing ap-

proach, and the conditional approach. We computed Bayes factors in favor of Hr 100 times

for the same data set and for each method and recorded the respective values and the run-

time to produce a result. We assigned a uniform prior distribution to our parameters of

interest, such that we could compute the prior probability of the constraint, p(θ ∈ R | He),

analytically. For the bridge sampling method, we drew 20, 000 samples from the constrained

posterior distribution. For the conditioning method the marginal probabilities of each con-

straint holding were estimated using 40, 000 draws from the posterior distribution, resulting

in a total of 40, 000 × 18 draws. For the encompassing prior approach, we drew 5 million

samples from the unconstrained posterior distribution.

Results

The estimated Bayes factors BFre are displayed in Figure 2. Bayes factors based on the

bridge sampling method and the conditioning method are centered around the same value
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(M = 168.88 and M = 168.55, respectively); however, the bridge sampling estimates varied

far less (SD = 1.873) than the estimates produced by the conditioning method (SD =

22.23). To understand the reasons for these differences in variability, we investigated the

autocorrelation and the influence of chain length on the Bayes factor estimates, but could

not identify a consistent pattern.

The encompassing prior approach failed to estimate any Bayes factor, that is, for each

iteration none of the 5 million posterior draws were in accordance with the constraint. This

is not too surprising; the prior probability of samples obeying the constraint is already 1.3

billion times lower than the number of posterior samples drawn
(
i.e., 1/18!

)
. Thus, for the

present example the encompassing prior approach can be applied only with great investment

of time.
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Figure 2 . Bayes factors for the bridge sampling method (black), the conditioning method
(dark grey), and the encompassing prior approach (light grey) for the test of an order-
restriction in Haberman’s (1978) data on the reporting of negative life events. Each dot
represents one Bayes factor estimate in favor of Hr obtained by the respective method. The
bridge sampling method yields more precise Bayes factor estimates than the conditioning
method; the encompassing prior approach fails to estimate any Bayes factor.
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The computation times are displayed in Figure 3. Regarding the computational

efficiency, the bridge sampling method had the lowest runtimes with a mean of M =

29.11(SD = 0.39) seconds. The encompassing prior approach had comparable runtimes

(M = 35.89, SD = 0.22). The conditioning method required the most time, with mean

runtimes of M = 375.84 (SD = 5.04) seconds, which is more than 6 minutes to estimate

one Bayes factor, compared to less than half a minute for the bridge sampling method.
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Figure 3 . Runtime for the bridge sampling method (black) is similar to that of the en-
compassing prior approach (light grey), whereas the conditioning method (dark grey) has
much higher computational costs. However, even though the runtime for the bridge sam-
pling method and the encompassing prior approach is similar, the latter method failed to
estimate any Bayes factors.

In sum, the empirical example demonstrates that the bridge sampling routine out-

performs both the conditioning method and the encompassing prior approach. The bridge

sampling estimates are considerably more precise than those of the conditioning method,

and are obtained more quickly. The encompassing prior approach fails to estimate any

Bayes factor altogether.

This example also illustrates how vulnerable the encompassing prior approach is to an

increase in model size: even though the data strongly supported the inequality-constrained
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hypothesis over the encompassing hypothesis, none of 5 million posterior draws across 100

replications (for a total of 500 million draws) obeyed all of the inequality constraints. Note

that, if for any replication a single posterior draw had obeyed the restriction (i.e., 1 out of 5

million) the estimated Bayes factor in favor of the inequality-constrained hypothesis would

have been 1.28 × 109 (i.e., a staggering overestimate), as the prior probability of a sample

obeying the restriction is minuscule.

Discussion

In this paper we describe a precise, scalable, and efficient bridge sampling routine to estimate

Bayes factors for inequality constrained hypotheses on multinomial data. Bridge sampling is

a promising alternative to current methods that sample from the unconstrained parameter

space and hence may yield imprecise results and long runtimes.

The main reason why the bridge sampling method achieves relatively high precision

–even for a model with many categories– is that it does not sample from the unconstrained

parameter space. Instead, bridge sampling combines the draws from the restricted target

distribution with samples from a proposal distribution to estimate the marginal likelihood

efficiently. As a result, the precision of the bridge sampling estimate does not depend on

the prior probability of the constraint, but rather depends on the similarity between the

proposal distribution and the target distribution. Meng and Schilling (2002, p. 584) note

that by using more sophisticated methods (e.g., by using warp bridge sampling) to create

more overlap between the proposal distribution and the target distribution “[...] we can

achieve better and better estimation efficiency based on the same set of draws, and it seems

there is no lower bound on the Monte Carlo error”. To achieve sufficient overlap between

the two distributions, we applied random variable transformation and used the method of

moments to construct a suitable proposal distribution.

Compared to existing methods, the bridge sampling routine requires more effort to

implement. As with the conditioning method, researchers who wish to use bridge sampling

to evaluate inequality constrained hypotheses need to implement a Gibbs sampling algo-
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rithm to draw samples from the constrained prior and posterior distribution. In addition,

functions must be implemented to perform the required variable transformations and to

apply the bridge sampling algorithm. In order to maximize the accessibility of the proposed

method, we therefore provide the R code to conduct the analysis in our online appendix. In

the near future we plan to make the analysis available in the user-friendly statistical software

program JASP (JASP Team, 2020), which does not require any programming experience

whatsoever.

The method proposed here is relatively general and may be extended to problems of

higher dimension and increasing sophistication. For instance, our bridge sampling routine

can be easily generalized to hypotheses that feature a combination of equality and inequality

constrained parameters, as well as parameters that are free to vary. We describe this

extension in Appendix A. Moreover, the bridge sampling framework could be expanded

to multinomial models with complex linear restrictions (e.g., Heck & Davis-Stober, 2019).

This would allow researchers to test more complex hypotheses, such as ordinal expectations

on the size ratio of the parameters of interest (e.g., Hr : θ1 > 3 × θ2), on the differences

between category proportions (e.g., Hr : (θ1 − θ2) < (θ3 − θ4)), or on odds ratios for

data that are summarized in contingency tables (e.g., Hr : θ1
(θ1+θ2) <

θ3
(θ3+θ4)). To apply

bridge sampling to these models, one needs to adapt the random variable transformations

to move θ to the real line while retaining the imposed constraints. Another generalization

of the presented methods concerns the application to hierarchical models, for cases where

participants repeatedly choose a response option and therefore category proportions are

nested within participants.

Our results demonstrate that bridge sampling offers considerable improvements in

precision and efficiency over existing methods. As our empirical application showed, for

multinomial models it is common to have a relatively high number of categories (i.e., K >

10) which can easily lead to extreme values of the Bayes factors, if the data either speak for or

against the restriction. In other disciplines, such as microbiology, we even find multinomial

models with up to K = 46 categories, as a study of the relationship between gut microbiome
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and BMI showed (Song et al., 2020). In these scenarios we believe that the benefit of the

bridge sampling routine is particularly apparent. To conclude, the bridge sampling routine

of estimating Bayes factors for inequality constraints in multinomial models constitutes a

promising tool to evaluate ordinal expectations reliably and efficiently.
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Appendix A

Bayes Factors for Mixed Constraints

In addition to pure equality-constrained and pure inequality-constrained hypotheses, re-

searchers may want to specify hypotheses with some parameters that are exactly equal

to each other while others can vary freely and again others are ordered (see e.g., Pericchi

Guerra, Liu, & Torres, 2008). However, it is not intuitively clear how to compute Bayes

factors when parametric constraints are mixed. Without loss of generality, we first consider

a mixed hypothesis Hm where the first j category parameters are constrained to be exactly

equal and where the remaining K − j parameters are increasing:

Hm : (θ1 = θ2 = · · · = θj) < θj+1 < · · · < θK .

As shown in Equation (3), the Bayes factor of restricted hypotheses against the encompass-

ing hypothesis can be formulated as

BFme = p(θ ∈ Rm | x, He)
p(θ ∈ Rm | He)

.

The mixed hypothesis stipulates the following set of constraints

Rm : (θ1 = · · · = θj) ∩ (θj < · · · < θK) = R0 ∩Rr.

The first set of constraints, which we denote with R0, are the equality constraints, and the

second set of constraints, which we denote with Rr, are the inequality constraints. Using

this notation, the Bayes factor can be reformulated as

BFme = p(θr ∈ Rr | θ0 ∈ R0, x, He)
p(θr ∈ Rr | θ0 ∈ R0, He)︸ ︷︷ ︸

BFre

× p(θ0 ∈ R0 | x, He)
p(θ0 ∈ R0 | He)︸ ︷︷ ︸

BF0e

,

that is, a conditional Bayes factor for the inequality constraints given the equality con-

straints and a Bayes factor for the equality constraints. The latter is similar to the Savage-
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Dickey ratio that we discussed before, but involves a correction for marginalization.

The probabilities above crucially depend on the marginal probabilities p(θ0 ∈ R0 |

He) and p(θ0 ∈ R0 | x, He), which are derived from the prior and posterior Dirichlet

distributions, respectively. Since the derivations and results are the same for the prior and

posterior probabilities, we derive it here for the prior distribution. The prior probability is

of the form

p(θ0 ∈ R0 | He) = 1
B(α)

∫
Re\R0

θ

∑j

k=1 αk−j
j

K−1∏
k=j+1

θαk−1
k

1− jθj −
K−1∑
k=j+1

θk

αK−1

dθr,

and involves a Dirichlet integral, except that the first j probabilities are now collapsed. Here,

we have used Re \ R0 to denote the unconstrained parameter space for the parameters

θr = (θj , . . . , θK−1)T. We introduce a change of variable λj = jθj , and λk = θk, for

k = j + 1, . . . , K − 1, with |J | = 1/j, such that

p(θ0 ∈ R0 | He) = 1
jB(α)

∫
Re\R0

(
λj
j

)∑j

k=1 αk−j K−1∏
k=j+1

θαk−1
k

1− λj −
K−1∑
k=j+1

θk

αK−1

dλr

= 1
B(α)

(
1
j

)∑j

k=1 αk−j+1

B

 j∑
k=1

αk − j + 1, αj+1, . . . , αK

 ,
which allows us to express the (marginal) Bayes factor for the equality constraints as

BFe0 = B(α)
B(α+ x)

(
1
j

)∑j

k=1 xk B
(∑j

k=1(αk + xk)− j + 1, αj+1 + xj+1, . . . , αK + xK
)

B
(∑j

k=1 αk − j + 1, αj+1, . . . , αK
) ,

where the latter factor introduces a correction for marginalizing which originates from the

marginalization of the remaining free parameters, including the collapsed category param-

eter. If it is the case that no free parameters are involved, that is, H0 assigns expected

category proportions to the entire parameter vector θ (such as in the multinomial test),

then the Bayes factor for the equality constraints corresponds to the Savage-Dickey density
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ratio.2 It readily follows that the conditional Bayes factor of inequality constraints given the

equality constraints now involves expectations over the conditional Dirichlet distributions

p(θr | θ0 ∈ R0, He) = Dirichlet

 j∑
k=1

αk − j + 1, αj+1 . . . , αK


and

p(θr | θ0 ∈ R0, x, He) = Dirichlet

 j∑
k=1

(αk + xk)− j + 1, αj+1 + xj+1 . . . , αK + xK

 ,
which can be computed, as before, using bridge sampling. To generalize the above deriva-

tions for any set of mixed constraints, we note that the conditional Dirichlet distribution

adds the parameters for the collapsed categories and corrects for the change in degrees of

freedom by subtracting the degrees of freedom it lost; j − 1 degrees of freedom are lost if j

categories are collapsed. Thus, for mixed hypotheses of the form

Hm : θ1 < θ2 = θ3 < θ4 = θ5 = θ6,

we find the following conditional Dirichlet distribution p(θr | θ0 ∈ R0, He) =

Dirichlet (α1, α2 + α3 − 1, α4 + α5 + α6 − 2), which has two sets of collapsed categories,

and we lose one degree of freedom for the first, and lose two degrees for the second col-

lapsed category.

The marginal probability has two corrections. First, a uniform probability is stipu-

lated for the collapsed categories, i.e., 1/j if j categories are collapsed. Its concentration

parameter is equal to the sum of the collapsed categories minus the change in degrees of

2When stipulating exact equality constraints on all parameters, it is assumed that there is no prior
uncertainty about the model parameters, and the likelihood of the constrained hypothesis marginalized over
the parameter space is simply a multinomial distribution. This expression follows from the fact that the
prior distribution under H0 is

p(θ | H0) = p(θ | He) I(θ = c)∫
Re

p(θ | He) I(θ = c) dθ
= p(θ = c | He)

p(θ = c | He)
= 1,

for θ = c and 0 otherwise.
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freedom. Second, a multivariate beta function is introduced that incorporates the corrected

concentration parameters. For the mixed hypothesis

Hm : θ1 < θ2 = θ3 < θ4 = θ5 = θ6,

we readily find the following marginal probability

B (α1, α2 + α3 − 1, α4 + α5 + α6 − 2)
B(α)

(1
2

)α2+α3−1 (1
3

)α4+α5+α6−2
,

and marginal Bayes factor,

BFe0 = B(α)
B(α′)

(1
2

)x2+x3 (1
3

)x4+x5+x6 B
(
α′1, α′2 + α′3 − 1, α′4 + α′5 + α′6 − 2

)
B (α1, α2 + α3 − 1, α4 + α5 + α6 − 2)

where we have used α′k = αk + xk. Note that this result has also been established for a

specific case, albeit for a more general set of hypotheses, in Mulder, Wagenmakers, and

Marsman (in press). What the above analysis of the Bayes factor for the mixed hypotheses

Hm shows is that we are, in general, able to factor the hypotheses and associated likelihoods.

This factorization is beneficial since it allows us to compute Bayes factors for parametric

constraints with the methods described in the main text, even if these constraints are mixed.

Intuitively, parameters that vary freely in both hypotheses do not affect the resulting Bayes

factor, since the associated part of the marginal likelihood can be split off from both the

mixed and encompassing hypotheses.

Example: Investigation of the Mendelian Laws of Inheritance

In order to demonstrate our method, we reanalyze data to test the Mendelian inheritance

theory. The data have already been considered in the context of inequality-constrained

hypotheses in Robertson (1978) and recently in Mulder et al. (in press). Mendel crossed a

plant variety that produced round yellow peas with a plant variety that produced wrinkled

green peas. He then classified whether the peas of the crossbreeds fell into one of four
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categories; (1) round and yellow, (2) wrinkled and yellow, (3) round and green, and (4)

wrinkled and green. From the classical mendelian laws of inheritance, one can formulate

the following inequality-constrained hypothesis about the ordering of the probability of peas

falling into one of the four categories:

Hm : θ1 < θ2 = θ3 < θ4.

A total of N = 556 peas were examined, that were distributed across the four categories as

follows: x = (315, 101, 108, 32)′. When assigning a uniform Dirichlet distribution as prior

for θ, we yield the following result:

BFme = BF0e × BFre

=
(1

2

)x2+x3 Γ(α2)Γ(α3)
Γ (α2 + α3)

Γ (α2 + x2 + α3 + x3)
Γ(α2 + x2)Γ(α3 + x3) ×

p
(
θ1 < θ23 < θ4 | θ0 ∈ R0, x, He

)
p
(
θ1 < θ23 < θ4 | θ0 ∈ R0, He

)
= 10.301× 6.0158

= 61.970,

where BF0e was computed using the Savage-Dickey density ratio on the second and third

category, and BFre was estimated by collapsing the second and third category, correcting

the concentration parameters, and then applying the bridge sampling routine.
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Appendix B

Simulation Study: Accuracy of Estimation Methods

To illustrate the accuracy of the estimation methods we conducted a simulation study. In

this study we used for four different data sets, given in Table B1, for which the exact

Bayes factors could be obtained. To apply the exact procedure we used stick-breaking to

express the inequality-constrained hypothesis as independent constraints which were then

numerically computed one-by-one. A detailed description the exact procedure can be found

in our online appendix. The normalizing constant of the restricted prior distribution was

readily available as we assigned a uniform Dirichlet prior on the model parameters. The

exact Bayes factors were then compared to the estimated Bayes factors from the bridge

sampling method, the conditioning method, and the encompassing prior approach.

Methods

The four data sets and exact results are summarized in Table B1. To quantify accuracy, we

estimated the Bayes factors 100 times using the bridge sampling method, the conditioning

method, and the encompassing prior approach. For all data sets, we estimated the Bayes

factor in favor of the inequality-constrained hypothesis Hr that the probabilities of each

category are increasing against the encompassing hypothesis He that allows all probabilities

to freely vary:

Hr : θ1 < θ2 < · · · < θK

He : θ1, θ2, · · · , θK .

For the bridge sampling method, we drew 20, 000 samples from the constrained posterior

distribution. For the conditioning method the marginal probabilities of each constraint

holding were estimated using 40, 000 draws from the posterior distribution, resulting in

a total of 200, 000 draws for x1 and x2, and 240, 000 draws for x3 and x4. For the en-
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Table B1
Data Sets and Corresponding Exact Bayes Factors in Favor of or Against the Inequality-
Constrained Hypotheses that the Parameters Are Increasing.

Observations p(θ ∈ Rr | x, He) BFer BFre
x1 = (3, 6, 9, 12, 15)′ 0.255149 0.03265839 30.62
x2 = (3, 6, 9, 6, 3)′ 0.00196566 4.24 0.23588
x3 = (3, 6, 9, 12, 15, 18)′ 0.149099 0.00931515 107.352
x4 = (18, 15, 12, 9, 6, 3)′ 2.07023× 10−9 452, 373 2.210565× 10−6

compassing prior approach, we drew 5 million samples from the unconstrained posterior

distribution.

Results

Figure B1 shows violin plots that display the Bayes factors for the three estimation methods

for the four data sets (panels a-d). Three results stand out in this simulation: First,

for all data sets the variability of the estimates is highest for the conditioning method.

Second, the encompassing prior approach is the most accurate for the data sets that show

evidence for the restrictive hypothesis (see panels a and c). Third, the advantage of bridge

sampling becomes most evident for data sets that show evidence against the restrictive

hypothesis (panels b and d). Especially in the 6-category model that shows evidence against

the inequality-constrained hypothesis (corresponding to x4, whose results are displays in

Figure B1d), bridge sampling is able to accurately estimate the exact Bayes factor, while

the conditioning method is slightly inaccurate and the encompassing prior method fails to

estimate any realistic Bayes factor at all: none of the posterior draws were consistent with

the restrictive hypothesis, yielding a Bayes factor of 0 for all 100 estimates.

Conclusion

In this simulation study we assessed the accuracy of the bridge sampling method, the condi-

tioning method, and the encompassing prior approach. We computed the exact Bayes factor

for four data sets and then estimated the Bayes factor using the three estimation methods.
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Figure B1 . Violin plots display the estimated Bayes factors for the bridge sampling method
(black), the conditioning method (dark grey), and the encompassing prior approach (light
grey). The dashed horizontal line indicates the true Bayes factor. In general, all estimation
methods approximate the true Bayes factor, with the conditioning method showing the
highest variability. However, for the 6-category model with evidence against the restrictive
hypothesis (panel d), the encompassing prior method does not succeed in estimating any
Bayes factor, and the conditioning method estimates are less accurate.
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The encompassing prior method is most accurate for two of the four data sets. However,

the performance of the method depends heavily on the size of the model and quickly de-

teriorates when the data show evidence against the inequality-constrained hypothesis. In

contrast, the conditioning method is more responsive to fluctuations in evidence. To im-

prove the accuracy of the method one could increase the number of samples. However, one

should take into account that an increase in the number of samples comes at the expense of

runtime, which is already many times higher than the runtime of the other two methods.

Overall, the bridge sampling routine shows the better trade-off between accuracy

and efficiency. The variability of the estimates remain in an acceptable range and bridge

sampling outperforms the other methods for the extreme data set x4. The reliability of

bridge sampling, which was already on display in the empirical application, was again

confirmed in this simulation study.

At this point, we would like to refer the interested reader to our online appendix for a

more extended simulation study. This additional simulation study further describes under

which conditions the encompassing prior approach and sometimes even the conditioning

method fail to estimate a realistic Bayes factor.
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Appendix C

R code to sample from a truncated Dirichlet distribution

Damien and Walker (2001) propose to sample from a one-dimensional truncated gamma

distribution using data-augmentation and Gibbs sampling. To facilitate the implementation

of the Gibbs sampling algorithm, Damien and Walker (2001) introduce a latent variable νk

whose joint density with γk results in convenient conditional distributions. Let γk be a

gamma variable with bounded support [γj , γq]. The resulting conditional distribution for

νk | γk is simply a uniform distribution on the interval (0, exp(−γk)). The conditional

distribution for γk | νk is proportional to γαk−1
k I(γk ∈ [lk, uk]), where lk = γj and uk =

min(γq,−log(νk)).

Based on these conditional distributions, the Gibbs sampling algorithm can be imple-

mented as follows. First, we initialize the value for γk by sampling from an unconstrained

gamma distribution. Second, we draw a sample for νk | γk from a Uniform(0, exp(−γk))

distribution. Then, we draw γk | νk using the inverse CDF technique. The inverse CDF

technique inverts the cumulative distribution function (CDF) of a distribution to map a

probability to the corresponding value of the random variable. Therefore, we first draw a

sample from a standard uniform distribution on the interval (0, 1) which serves as the value

for which the cumulative distribution function (CDF) of γk, that is P (γk ≤ xk), is evaluated

at. We can then find the corresponding value γk by applying the following equation:

γk = αk

√
P (γk ≤ xk)(uαkk − l

αk
k ) + lαkk .

Below we show the R implementation for this algorithm. Note however, that for our simu-

lation study we used a C++ implementation to increase the efficiency of the algorithm and

to make it numerically stable. This C++ code is also available in our OSF folder.
1###################################################################

# Alexandra S a r a f o g l o u , Last updated June 2020

3# Samples from a t r u n c a t e d D i r i c h l e t d i s t r i b u t i o n

# Code w r i t t e n by Maarten Marsman and Alexandra S a r a f o g l o u

5# R e f e r e n c e :

# Damien , P . , & Walker , S . G. ( 2 0 0 1 ) . Sampling t r u n c a t e d

7# normal , beta , and gamma d e n s i t i e s . Journal o f Computational
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# and Graphical S t a t i s t i c s , 10 , 206−−215.

9##################################################################

11truncatedSampling <− f u n c t i o n (A, boundaries , n i t e r = 1 e5 ) {

# input : A : v e c t o r o f D i r i c h l e t paramters

13# boundar ies : l i s t with i n d i c e s f o r upper and lower t r u n c a t i o n

# boundar ies f o r each parameter theta_k

15# output : samples : from t r u n c a t e d D i r i c h l e t d i s t r i b u t i o n

17# d e f i n e 5% o f samples as burn−i n ; minimum number o f burn−i n samples i s 10

nburnin <− max( c ( 1 0 , ( n i t e r /100) ∗ 5 ) )

19

samples <− matrix ( n c o l=l e n g t h (A) , nrow = ( n i t e r + nburnin ) )

21

# s t a r t i n g v a l u e s o f Gibbs Sampler

23K <− l e n g t h (A)

gamma <− rgamma(K, A, 1)

25i t e r a t i o n <− 0

27f o r ( i t e r i n 1 : ( n i t e r+nburnin ) ) {

29f o r ( k i n 1 :K){

31## 0 . CHECK FOR BOUNDS ##

there_are_no_bounds <− i s . n u l l ( u n l i s t ( boundar ies [ [ k ] ] ) )

33

i f ( there_are_no_bounds ){

35

# i f t h e r e a re no bounds , sample from u n c o n s t r a i n e d gamma d i s t r i b u t i o n

37gamma [ k ] <− rgamma ( 1 , A[ k ] , 1)

39} e l s e {

41# i f t h e r e a re bounds , sample from t r u n c a t e d gamma d i s t r i b u t i o n

43## 1 . LOWER BOUND ##

45# i n i t i a l i z e lower bound

Lo <− 0

47# check f o r lower bound

there_is_a_lower_bound <− ! i s . n u l l ( boundar ies [ [ k ] ] $ lower )

49i f ( there_is_a_lower_bound ){

51s m a l l e r _ v a l u e <− boundar ies [ [ k ] ] $ lower

Lo <− max(gamma [ s m a l l e r _ v a l u e ] )

53

}

55

## 2 . UPPER BOUND ##

57

# i n i t i a l i z e upper bound

59v <− r u n i f ( 1 , 0 , exp(−gamma [ k ] ) )

Hi <− −l o g ( v )

61# check f o r upper bound
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there_is_a_upper_bound <− ! i s . n u l l ( boundar ies [ [ k ] ] $upper )

63i f ( there_is_a_upper_bound ) {

65l a r g e r _ v a l u e <− boundar ies [ [ k ] ] $upper

Hi <− min (gamma [ l a r g e r _ v a l u e ] , Hi )

67

}

69

## 3 . SAMPLING ##

71

gamma [ k ] <− ( r u n i f ( 1 )∗ ( Hi ^A[ k ] − Lo^A[ k ] ) + Lo^A[ k ] ) ^ { 1 /A[ k ] }

73

}

75

}

77# 4 . TRANSFORM GAMMA TO DIRICHLET SAMPLES

samples [ i t e r , ] <− as . numeric (gamma/sum(gamma ) )

79

# show p r o g r e s s

81i f ( i t e r %i n% ( n i t e r /100 ∗ seq ( 1 , 100 , by = 1 0 ) ) ) {

i t e r a t i o n <− i t e r a t i o n + 10

83p r i n t ( p a s t e ( ’ sampling completed : ’ , i t e r a t i o n , ’% ’ , c o l l a p s e = ’\n ’ ) )

}

85}

samples <− samples [−(1: nburnin ) , ]

87r e t u r n ( samples )

}

89

# ## Example

91#

# # Draw 20 samples from a t r u n c a t e d D i r i c h l e t ( 1 , 1 , 1 , 1 ) d i s t r i b u t i o n

93# # with the f o l l o w i n g order−c o n s t r a i n t s : t h e t a 1 > t h e t a 2 > t h e t a 3 > t h e t a 4

#

95# boundar ies <− l i s t (

# l i s t ( lower = c ( 2 , 3 , 4 ) , upper = NULL ) , # t h e t a 1 > ( theta2 , theta3 , t h e t a 4 )

97# l i s t ( lower = c ( 3 , 4) , upper = c ( 1 ) ) , # t h e t a 1 > t h e t a 2 > ( theta3 , t h e t a 4 )

# l i s t ( lower = c ( 4 ) , upper = c ( 1 , 2) ) , # ( theta1 , t h e t a 2 ) > t h e t a 3 > t h e t a 4

99# l i s t ( lower = NULL , upper = c ( 1 , 2 , 3 ) ) # ( theta1 , theta2 , t h e t a 3 ) > t h e t a 4

# )

101# A <− c ( 1 , 1 , 1 , 1)

# n i t e r <− 20

103# truncatedSampling (A, boundaries , n i t e r )


