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Abstract

P values have been critiqued on several grounds but remain entrenched as
the dominant inferential method in the empirical sciences. Here we elaborate
on the fact that in many statistical models, the one-sided P value has a direct
Bayesian interpretation as the approximate posterior mass for values lower
than zero. The connection between the one-sided P value and posterior
probability mass reveals three insights: (1) P values can be interpreted as
Bayesian tests of direction, to be used only when the null hypothesis is known
from the outset to be false; (2) as a measure of evidence, P values are biased
against a point null hypothesis; (3) with N fixed and effect size variable,
there is an approximately linear relation between P values and Bayesian
point null hypothesis tests.

Keywords: Hypothesis testing, Bayesian inference, Null hypothesis, Esti-
mation.

Across the empirical sciences –be it in medicine, biology, neuroscience, economics,
sociology, or psychology– the classical P value is arguably the single most influential concept
for statistical inference. Scientific claims about the presence of hypothesized effects are
judged fit for publication only when the associated statistical tests yield P < .05, in which
case researchers feel sanctioned to “reject the null hypothesis” and consequently embrace
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the alternative hypothesis. Despite its stranglehold on statistical reporting, however, the
P value has been subject to intense scrutiny and numerous critiques; accessible overviews
are provided by Johnson (1999), Morrison and Henkel (1970), Mulaik and Steiger (1997),
Nickerson (2000), and Wagenmakers (2007).1

The P value detractors usually do not mince words. For instance, Edwards (1965, p.
400) argued that “Classical significance tests are violently biased against the null hypothe-
sis.”, Berger and Delampady (1987, p. 330) stated that “when testing precise hypotheses,
formal use of P-values should be abandoned. Almost anything will give a better indication
of the evidence provided by the data against H0.”, Meehl (1978, p. 817) claimed that “the
almost universal reliance on merely refuting the null hypothesis as the standard method
for corroborating substantive theories in the soft areas is a terrible mistake, is basically
unsound, poor scientific strategy, and one of the worst things that ever happened in the
history of psychology.”, and Rozeboom (1997, p. 335) echoed this statement when he called
P value significance testing “surely the most bone-headedly misguided procedure ever in-
stitutionalized in the rote training of science students”.

Undeterred by such verbal onslaughts, some researchers believe that the critiques
against P values are overstated or misplaced. For instance, Wainer (1999, p. 212) feels
“a little at a loss to understand fully the vehemence and vindictiveness” of the P value
critiques, Hagen (1997, p. 22) praises the logic of P value hypothesis testing, calling it
“elegant” and “extraordinarily creative”, and Leek and Peng (2015, p. 612) point out that
“Arguing about the P value is like focusing on a single misspelling, rather than on the
faulty logic of a sentence”, and recommend that statisticians “need to stop arguing about
P values”.

In this article we continue to argue over P values. We depart by outlining a well-
known Bayesian interpretation of the one-sided P value, and then sketch three immediate
consequences. By doing so we hope to increase the field’s awareness of what P values are
and what they are not (Schervish, 1996).

Point of Departure: A Bayesian Interpretation of the One-Sided P
Value

The Bayesian interpretation of the one-sided P value has a long and ongoing history
(e.g., Berger & Mortera, 1999, Table 3; Casella & Berger, 1987; Greenland & Poole, 2013;
Jeffreys, 1961; Lee, 2012, pp. 143–145; Lindley, 1965; Marin & Robert, 2007, p. 33; Morey
& Wagenmakers, 2014; Pratt, 1965; Pratt, Raiffa, & Schlaifer, 1995; Rouanet, 1996). The
main result may be summarized as follows. Consider Bayesian parameter estimation for the
location parameter µ in a statistical model from the exponential family, assume the prior
on µ is uniform on the real line, and denote the observed data by y. Then the proportion of
the posterior distribution with mass lower than zero equals the one-sided classical P value,
that is (e.g., Lindley, 1965; Pratt et al., 1995, p. 533),∫ 0

−∞
p(µ | y)dµ = P1. (1)

1A selective and 14-year old listing of over 400 articles arguing against the use of p-values is available at
http://warnercnr.colostate.edu/~anderson/thompson1.html.
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Thus, for the classical statistician the one-sided P value represents the outcome of a signifi-
cance test that assumes the null hypothesis is true, whereas for the Bayesian statistician the
one-sided P value can be obtained from an estimation procedure (i.e., posterior updating
of µ) that assumes the null hypothesis is false.

Furthermore, in this specific case the Bayesian estimation outcome is directly related
to a Bayesian test for direction, one in which we contrast H+ : µ > 0 (i.e., the effect is
positive) against H− : µ < 0 (i.e., the effect is negative). When the prior is symmetric
around µ = 0, the Bayes factor hypothesis test (Jeffreys, 1961; Kass & Raftery, 1995; Ly,
Verhagen, & Wagenmakers, in press) simplifies to

BF+− =
p(y | H+)

p(y | H−)

=

∫∞
0 p(µ | y)dµ∫ 0
−∞ p(µ | y)dµ

=
1− P1

P1
,

(2)

where P1 denotes the classical one-sided P value. Hence, there is a direct and exact rela-
tion between the Bayes factor for a test of direction and the one-sided P value such that
log(BF−+) = logit(P1).

As mentioned above, the relationship is exact for location parameters in models from
the exponential family when these parameters are assigned uniform priors; for other param-
eters and prior distributions the relationship is approximate (e.g., Casella & Berger, 1987;
Greenland & Poole, 2013; for a critique see Gelman, 2013). In what follows we explore
three consequences and insights afforded by the Bayesian interpretation of the one-sided P
value.

First Consequence: P Values Are Meaningful Only When the Null
Hypothesis is False

The Bayesian interpretation of the one-sided P value is that it is a test for direction,
as the logit of the one-sided P value equals the log of the Bayes factor that contrasts
H+ : µ > 0 (i.e., the effect is positive) against H− : µ < 0 (i.e., the effect is negative).
Consequently, from this Bayesian perspective, the one-sided P value is appropriate only
when H0 : µ = 0 is known from the outset to be false or uninteresting (Jeffreys, 1961, p.
387; but see DeGroot, 1973).

The interpretation of a one-sided P value as a test for direction –not as a test for the
null hypothesis– is relevant because a common critique against the use of P values is that
null hypothesis is nearly always false. For instance, Johnson (1999, p. 764) complains “P
is calculated under the assumption that the null hypothesis is true. Most null hypotheses
tested, however, state that some parameter equals zero, or that some set of parameters are
all equal. These hypotheses, called point null hypotheses, are almost invariably known to
be false before any data are collected”. The same sentiment was expressed by Cohen (1990,
p. 1308): “A little thought reveals a fact widely understood among statisticians: The null
hypothesis, taken literally (and that’s the only way you can take it in formal hypothesis
testing), is always false in the real world. It can only be true in the bowels of a computer
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processor running a Monte Carlo study (and even then a stray electron may make it false).
If it is false, even to a tiny degree, it must be the case that a large enough sample will
produce a significant result and lead to its rejection. So if the null hypothesis is always
false, what’s the big deal about rejecting it?”

From a Bayesian perspective, however, the one-sided P value is not a test that involves
the null hypothesis at all – instead, it is a test for the direction of an effect, suitable exactly
for those scenarios where Johnson (1999) and Cohen (1990) argued it is meaningless. Note
that in the Bayesian interpretation, collecting a large enough sample does not confirm the
obvious; instead, what will be confirmed is the true direction of the effect. Paradoxically,
the threat to the validity of the Bayesian interpretation of the one-sided P value is not that
the null hypothesis is false, but that the null hypothesis is true. For when the null is exactly
true, the test is between two directional models that are both equally wrong: the truth is
literally in the middle (see also Sanborn & Hills, 2014; but see Rouder, 2014).

In sum, from a Bayesian perspective the one-sided P value represents a test for
direction, a test that is valid only when the null hypothesis is false. For readers familiar
with the popular argument against P values (i.e., “the null is never true”) this line of
argumentation may come as a surprise.

Second Consequence: P Values Are Biased Against H0

As alluded to earlier, several statisticians have remarked that P values overestimate
the evidence against a point null hypothesis (e.g., Berger & Delampady, 1987; Dickey, 1977;
Edwards, Lindman, & Savage, 1963; Johnson, 2013; Sellke, Bayarri, & Berger, 2001). The
relation expressed in Equation 2 allows us to bypass mathematical details and present an
intuitive argument: the one-sided P value corresponds to a Bayesian test for direction, in
which H+ is pitted against H−; for the same data, such a test for direction generally yields
a more diagnostic outcome than a test for existence, for instance, one that compares H1

(i.e., “there is an effect”) against H0 (i.e., “there is no effect”). The reason why tests for
direction are relatively diagnostic is because the models involved make opposite predictions:
under one model the effect is predicted to be negative, whereas under the other model the
effect is predicted to be positive. In contrast, for a test of existence, H0 is often a reduced
case of H1, which means that the models can make similar predictions.

For example, consider a match between two avid Rummikub players. After six games,
player A is leading player B by 4-2. If the choice is between H+: “player A is better than
player B” versus H−: “player B is better than player A”, one might have a strong intuitive
preference in favor of H+: after all, player B is unlikely to be losing by 4-2 when she is in
reality the better player. However, if the choice is between H1: “player A and player B are
not equally good” versus H0: “player A and player B are equally good”, one’s preference is
certainly less pronounced: a score of 4-2 is not that unlikely to occur when the players are
equally skilled.

In sum, tests for direction are easier than tests for existence: when applied to the
same data, tests for direction are more diagnostic than tests for existence. From a Bayesian
perspective, the one-sided P value is a test for direction; when this test is misinterpreted
as a test for existence –as classical statisticians are wont to do– this overstates the true
evidence that the data provide against a point null hypothesis.
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Figure 1. The highly regular relationship between one-sided P values and point null Bayes factor
hypothesis tests for 440 t-test results reported by Wetzels et al. (2011) and reanalyzed by Rouder
et al. (2012).

Third Consequence: With N Fixed, the Relation between P Values
and Bayesian Point Null Hypothesis Tests is Approximately Linear

Several authors have explored the lawlike relationship between the classical P value
and the Bayes factor against a point null hypothesis (e.g., Rouder, Morey, Speckman, &
Province, 2012; Wetzels et al., 2011). Specifically, when sample size N is relatively stable
and only effect size varies, lower P values will be accompanied by higher Bayes factors
against the point null hypothesis. Figure 1 shows the empirical relation for 440 t-tests
reported by Wetzels et al. (2011) and reanalyzed by Rouder et al. (2012).

We now formalize the relation between P values and Bayes factors for point null
hypotheses by exploiting two facts. The first fact is that the one-sided P value is the
posterior mass to the left of zero (i.e., Equation 1). The second fact is that the Bayes factor
hypothesis test for a point null hypothesis H0 versus an unrestricted alternative H1 is given
by the Savage-Dickey density ratio (e.g., Dickey & Lientz, 1970; Wagenmakers, Lodewyckx,
Kuriyal, & Grasman, 2010; Wetzels, Grasman, & Wagenmakers, 2010):

BF01 =
p(y | H0)

p(y | H1)
=
p(µ = 0 | y,H1)

p(µ = 0 | H1)
. (3)

In words, the Bayes factor in favor of the null hypothesis H0 equals the ratio of the posterior
ordinate to the prior ordinate, evaluated under the alternative hypothesis H1 and for the
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Figure 2. Prior and posterior distribution for a hypothetical data set. The shaded area of the
posterior distribution indicates the mass that is lower than zero, whereas the two dots visualize the
Savage-Dickey density ratio. As the posterior distribution shifts to the right, the shaded area and
the posterior ordinate at µ = 0 decrease simultaneously.

point of interest (here µ = 0; for a short proof see O’Hagan & Forster, 2004, pp. 174–177).

We examine the following simplified scenario. The prior for the location parameter
µ is a standard normal under H1: p(µ | H1) = N (0, 1). Data points yi, i = 1, . . . , N ,
arrive and yield a posterior for µ that is a normal distribution with mean mµ = N

N+1 ȳ and

variance s2µ = 1
N+1 : p(µ | y,H1) = N (mµ, s

2
µ). We investigate the case where sample size

N is fixed but ȳ varies, that is, we keep s2µ constant but vary mµ such that the posterior
distribution is shifted to the right. Figure 2 shows the prior distribution and one example
of a posterior distribution. The shaded area indicates p(µ < 0 | y,H1), the posterior mass
lower than zero, and it is approximately equal to the one-sided P value; the ratio between
the posterior and prior ordinate at µ = 0 equals BF01, the Bayes factor for the point null
hypothesis (i.e., Equation 3). When the posterior distribution is shifted to the right this
will simultaneously decrease both p(µ < 0 | y,H1) and BF01.

The nature of these simultaneous changes is shown in Figure 3 for values of P1 ≤ 0.05
and N = 10. The left panel of Figure 3 shows the relation between the Bayes factor for
the point null hypothesis and the posterior mass lower than zero on the untransformed
scale, and the right panel shows the same relation on the log-scale. Comparison against
the straight grey line segments confirms that the relation on the log-scale is approximately
linear.
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Figure 3. Lawlike relation between the one-sided P value and the point null Bayes factor BF01

for values of P1 < .05 and N = 10. The left panel shows the relation on the untransformed scale,
and the right panel shows the relation after a logaritmic transformation. In gray are straight line
segments that connect the endpoints of the scale.

In this demonstration, the lower end-point corresponds to a value of mµ for which the
point of interest (µ = 0) is five standard deviations away from the mean (i.e., the five σ rule
commonly used in physics), whereas the upper end-point corresponds to a value of mµ for
which P1 = .05 (i.e., the threshold level of significance used in most scientific disciplines).

An interesting observation about the relations shown in Figure 3 is that they are
invariant across different choices of N and the choice of prior variance for the location
parameter µ. That is, we can define a prior p(µ | H1) = N (0, τ2) for the location parameter
µ with τ2 6= 1, or we can use a different value for N , and –except for a change of values on
the y-axis– the same two panels would result. This means that the lawlike relation between
the approximate one-sided P value and the Bayes factor is relatively general.

In sum, for a fixed value of N there exists a lawlike relation between the (approximate)
one-sided P value and the Bayes factor for a point-null hypothesis. This relation implies that
one can traverse from the one-sided P value to the Bayes factor and vice versa. Assuming
that the relation between log(P1) and log(BF01) is log(P1) ≈ α + β log(BF01), then we

can compute P1 as exp(α)BFβ01, approximately. This also implies that when two equal-
N studies have been done yielding one-sided P values Pa and Pb = 2Pa, we have that
Pb = 2Pa ≈ exp(α)2BF01(a)β ≈ exp(α)BF01(b)

β, such that BF01(b) ≈ BF01(a) β
√

2.

Concluding Comments

We have demonstrated that one-sided P values can be given a Bayesian interpretation
as an approximate test of direction, that is, a test of whether a latent effect is negative or
positive. From a Bayesian perspective, this means that P values may be used when the
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null hypothesis is false or when its veracity is not at issue (and when a diffuse, symmetric
prior on the location parameter is acceptable). When misinterpreted as tests of existence,
P values overestimate the evidence against the null hypothesis, as a test for direction is
generally easier than a test for existence. Finally, with N fixed and effect size variable, P
values and point null Bayesian hypothesis tests are approximately linearly related on the log-
scale. This latter finding may falsely suggest that tests for direction and tests for existence
are closely related. Although we have demonstrated this to be the case for N fixed, the
situation changes if N is variable (e.g., Cano, Carazo, & Salmerón, 2013; Girón, Mart́ınez,
Moreno, & Torres, 2006). With N variable, sharp conflicts between test of direction and
tests of existence are unavoidable, a phenomenon known as Lindley’s paradox (Lindley,
1957). Consider the scenario shown in Figure 2 and imagine that more data are collected,
causing the posterior distribution to become more peaked. At the same time, imagine that
the posterior mean moves toward zero such that the posterior area lower than zero remains
constant; when this happens the posterior ordinate will increase and this strengthens the
evidence in favor of the point null hypothesis. Thus, as N increases and the posterior
area lower than zero remains constant, the evidence in favor of the point null hypothesis
increases indefinitely. This means that in a test for direction, one may be relatively certain
that the effect is positive rather than negative; for the same data, a test for existence may
reveal that the null hypothesis is much stronger supported than the alternative hypothesis.
Of course, the paradox seizes to feel like a paradox as soon as it is properly understood.
In the foreword to his monograph Theory of Probability, Jeffreys already underscores the
main point: “The most beneficial result that I can hope for as a consequence of this work is
that more attention will be paid to the precise statement of the alternatives involved in the
questions asked. It is sometimes considered a paradox that the answer depends not only on
the observations but on the question; it should be a platitude.”.

The Bayesian interpretation of the one-sided P value presents a double-edged sword.
On the one hand, researchers can feel more confident in their use of the one-sided P value;
after all, it has a Bayesian interpretation and it is valid when the null hypothesis is false
(and when a diffuse, symmetric prior on the location parameter is acceptable). On the other
hand, it is clear that the Bayesian interpretation of the one-sided P value presents a test of
direction, not a test of existence. Despite the fact that many statisticians and methodolo-
gists have argued that tests of direction are more meaningful than tests of existence, we are
not convinced that their arguments resonate with medical researchers, geneticists, experi-
mental psychologists, and researchers in similar fields where general laws and invariances
are regularly tested by means of empirical investigations.
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