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Abstract
In this paper we study the statistical relations between three latent trait models for
accuracy and response times: the Hierarchical model of van der Linden (2007, Psy-
chometrika, 72(3), 629–650), the Signed Residual Time model proposed by Maris
and van der Maas (2012, Psychometrika, 77(4), 615–633), and the Drift Diffusion
model as proposed by Tuerlinckx and De Boeck (2005, Psychometrika, 70(4), 629–
650). What sets these three models apart is that the HM and the DM either assume
or imply that accuracy and response times are independent given the latent trait
variables, while the SM does not. In this paper we investigate the impact of this
conditional independence property —or a lack thereof— on the manifest probabil-
ity distribution for accuracies and response times, and reveal how the accuracy and
response time for an item i are related in the manifest distributions that are implied
by the three latent trait models. Our approach to characterize the manifest proba-
bility distributions is related to the Dutch Identity (Holland, 1990, Psychometrika,
55(6), 5–18), and we discuss the relation between these two approaches.

Keywords: Drift Diffusion model, Dutch Identity, graphical model, Hierarchical
model, item response theory, response times, Signed Residual Time model, condi-
tional independence
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Introduction

In this paper we aim to clarify the statistical relations between three latent trait models for
accuracy and response times: the Hierarchical model (HM) of van der Linden (2007), the Signed
Residual Time model (SM) of Maris and van der Maas (2012), and the Drift Diffusion model (DM)
proposed by Tuerlinckx and De Boeck (2005). These three models originate from different back-
grounds and differ in many respects. Because of this, the way that these models relate to each other
has been the topic of several publications. For instance, van Rijn and Ali (2017a) evaluated how the
three models perform in practical situations, and Molenaar, Tuerlinckx, and van der Maas (2015a,
2015b) show that two of the models, the DM and the HM, can be formulated as a generalized linear
model. Here we investigate the manifest probability distributions that are implied by the three latent
trait models.

A major distinction between the three latent trait models is in the relation they stipulate
between accuracy and response time after conditioning on the latent trait variables. Whereas re-
sponses are independent of response times after conditioning on the latent variable(s) in both the
DM and the HM, this is not the case for the SM. This distinction inspired several statistical tests
for the conditional independence between responses and response times (van der Linden and Clas,
2010; Bolsinova and Maris, 2016; Bolsinova and Tijmstra, 2016), and new statistical models to
model residual dependencies (Bolsinova, De Boeck, and Tijmstra, 2017; Bolsinova, Tijmstra, and
Molenaar, 2017). In this paper, we will study what the impact is of this conditional independence
assumption —or a lack thereof— on the manifest distribution of accuracy and response times that
is implied by the three latent trait models.

The remainder of this paper is structured as follows. In the next section, we introduce the
three latent trait models. We will focus on versions of the models that either use or imply the two-
parameter logistic model for the marginal distribution of response accuracies. We then introduce our
approach to characterize the manifest probability distributions. After having introduced the three
latent trait models and our approach to express their manifest distributions we set out to characterize
the manifest expressions. Our paper ends with a discussion of the results.

Models

In this section we introduce the three latent trait models. We will assume that the item pa-
rameters are fixed constants, but that the accuracies, the response times, and the latent variables are
random variables. Since these variables are assumed to be random everywhere in this paper, we do
not distinguish between (vectors of) random variables and their realizations. We use x to denote a
vector of p response accuracies —xi ∈ {0, 1}— and use t to denote a vector of p response times
—ti ∈ R+ for the HM and DM and ti ∈ (0, di) for the SM, see below.

The Hierarchical Model

The HM, as proposed by van der Linden (2007), is a general statistical framework for mod-
eling accuracies and responses times that is based on the idea that there are two latent traits at work;
ability θ governs the response accuracy distribution and speed η the response time distribution. Im-
portantly, the response accuracy distribution is assumed to be independent of speed η given ability
θ, the response time distribution is assumed to be independent of ability θ given speed η, and it is
also assumed that accuracies and response times are independent given the full set of latent traits,
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i.e.,
p(x, t | θ, η) = p(x | θ) p(t | η).

This set-up provides a plug-and-play framework for modeling accuracy and response times: the
measurement model for ability θ —marginal distribution of accuracies p(x | θ)— can be chosen
independently of the measurement model for speed η —marginal distribution of response times
p(t | η).1 The HM is concluded with a model for the two latent traits.

Different measurement models for ability θ have been used in the literature. For example, van
der Linden (2007) used normal ogive models, Bolsinova, De Boeck, and Tijmstra (2017) used their
logistic counterparts, while Zhan, Jiao, and Liao (2018) used cognitive diagnosis models instead.
Here, we use the two-parameter logistic model,

p(x | θ) =

p∏
i=1

p(xi | θ) =

p∏
i=1

exp (xi αi(θ + βi))
1 + exp (αi(θ + βi))

, (1)

where αi is an item discrimination parameter and βi is an item easiness parameter. There are two
reasons for using the two-parameter logistic model here. Firstly, the marginal distribution of ac-
curacies p(x | θ) that is implied by the versions of the SM and DM that are used here is also a
two-parameter logistic model. Secondly, the two-parameter logistic model is a member of the ex-
ponential family of distributions, which will be convenient for expressing the manifest probability
distribution p(x, t).

Different measurement models for speed η have also been used in the literature. For example,
van der Linden (2006) used a log-normal distribution, Fox, Klein Entink, and van der Linden (2007)
used a linear factor model for log-transformed response times, and Klein Entink, van der Linden,
and Fox (2009) used models based on Box-Cox transformations of response times. In this paper we
will use the log-normal distribution,

p(t | η) =

p∏
i=1

p(ti | η) =

p∏
i=1

√
φi

2π
1
ti

exp
(
−

1
2
φi (ln(ti) + η − ξi)2

)
, (2)

where ξi is an item time intensity parameter and φi an item precision parameter. The item pre-
cision φi is the response-time analogue of the item discrimination in the two-parameter logistic
model; larger values of φi imply that speed explains a larger portion of the log-time variance. The
log-normal distribution is a common choice for the measurement model for speed η in the HM
framework, and is also a member of the exponential family of distributions.

To conclude the HM we specify a distribution for ability θ and speed η. Typically, a bivariate
normal distribution is used in which ability and speed are correlated. To identify the model, however,
the means of the bivariate normal need to be constrained to zero and the marginal variance of ability
needs to be constrained to one.2

1We will use “marginal distribution of x” to refer to the distribution

p(x | θ) =

∫
R+

p(x, t | θ) dt,

and we will use “manifest distribution of x” to refer to the distribution

p(x) =

∫
R

p(x | θ) p(θ) dθ.

2Alternatively, one may choose an item i and constrain βi and ξi to zero and constrain αi to one for this item.
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The Signed Residual Time Model

The SM has been proposed by Maris and van der Maas (2012) as a measurement model for
ability θ in the context of tests with item-level time limits. The model was specifically designed for
tests that use the following scoring rule,

s =

p∑
i=1

si = (2xi − 1)(di − ti),

where di is the time limit for item i. This scoring rule encourages persons to work fast but punishes
guessing: residual time di − ti is gained when the response is correct, but is lost when the response
is incorrect. Van Rijn and Ali (2017b) demonstrated that the SM is also appropriate for applications
where these time limits are not specified a priori, but “estimated” from the observed response time
distributions.

The SM specifies the following distribution for accuracy x and response times t:

p(x, t | θ) =

p∏
i=1

(θ + βi)
exp ((2xi − 1)(di − ti)(θ + βi))

exp(di(θ + βi)) − exp(−di(θ + βi))
, (3)

where βi is an item easiness parameter. Observe that the SM is an exponential family model, and
that the scoring rule s is the sufficient statistic for ability θ. The SM has been generalized by van
Rijn and Ali (2017b) allowing the items to differ in their discriminative power even when the time
limits are the same across items. In this paper we will use the standard version of the SM.

Whereas the HM characterizes the joint distribution of accuracies and response times by
specific choices of the marginals p(x | θ) and p(t | η), the SM directly specifies a joint distribution
for accuracies and response times p(x, t | θ). By integrating out the response times we obtain the
marginal distribution for accuracies p(x | θ). Maris and van der Maas (2012) show that this marginal
distribution is the two-parameter logistic model in Eq. (1), where the item discrimination αi is equal
to the item time limit di. In a similar way, we obtain the marginal distribution of response times
p(t | θ) by summing out the accuracies,

p(t | θ) =

p∏
i=1

(θ + βi)
exp((di − ti)(θ + βi)) + exp(−(di − ti)(θ + βi))

exp(di(θ + βi)) − exp(−di(θ + βi))
.

An alternative specification of the SM is in terms of accuracies and that what Maris and
van der Maas (2012, p. 624) refer to as pseudo response times t∗. Pseudo response times are
obtained from response times through the transformation

t∗i =

ti if xi = 1,
di − ti if xi = 0.

(4)

This transformation from response times to pseudo response times is one-to-one, so that no infor-
mation is lost. One convenient feature of using pseudo response times instead of response times is
that the pseudo response times and accuracies are (conditionally) independent in the SM, i.e.,

p(x, t∗ | θ) = p(x | θ)p(t∗ | θ),

where the marginal distribution p(t∗ | θ) is equal to,

p(t∗ | θ) =

p∏
i=1

(θ + βi)
exp

(
−t∗i (θ + βi)

)
1 − exp (−di (θ + βi))

. (5)
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The Drift Diffusion Model

The DM was introduced by Ratcliff (1978) as a model for two-choice experiments. In the
DM, evidence for either choice accumulates over time until a decision boundary is reached. One
way to characterize this evidence-accumulation process is in terms of a Wiener process with con-
stant drift and volatility, and absorbing upper and lower boundaries (Cox & Miller, 1970). The
drift µ of the diffusion process determines how fast information is accumulated, the volatility σ

determines how noisy the accumulation process is, and the distance between the two boundaries α
determines how much evidence needs to be accumulated before a choice is made. The process has
two additional parameters; a bias parameter z that indicates the distance from the starting point to
the lower boundary, and the non-decision time T(er). A commonly used simplification of the DM
assumes that the process is unbiased z = 1

2α.
The DM has been extended to model differences between persons and tasks. For example,

Tuerlinckx and De Boeck (2005) proposed to decompose the drift µ of the accumulation process
into a person and an item part —i.e., µ = θ + βi— and to treat the distance between the boundaries
as an item characteristic —i.e., α = αi. The person component θ in the drift specification carries
the interpretation of an ability in item response theory models, as a higher value of θ implies an
increased probability of choosing the correct alternative. To identify the DM, Tuerlinckx and De
Boeck (2005) fixed the volatility σ to one. The joint distribution of decision times and the chosen
alternatives —i.e., response accuracies if the upper and the lower boundaries correspond to the
correct and incorrect responses— is then equal to:

p(x, t | θ) =

p∏
i=1

π

α2
i

exp
(
1
2
αi (2xi − 1) (θ + βi) −

1
2

(
ti − T(er)

)
(θ + βi)2

)
(6)

×

∞∑
n=1

sin
(
1
2
πn

)
exp

− 1
2α2

i

π2n2 (
ti − T(er)

) .
Both the SM and the DM directly specify a joint distribution of accuracies and decision times

(response times) that is based on one latent trait; ability θ. In contrast to the SM, however, accuracies
and response times are independent given ability in the (unbiased) DM. The marginal p(x | θ) is the
two-parameter logistic model in Eq. (1), where the discrimination parameter equals the distance
between the boundaries in the diffusion process, and the easiness parameter is an item effect on drift
of the diffusion process. The marginal p(t | θ) is equal to

p(t | θ) =

p∏
i=1

2π
α2

i

cosh
(
1
2
αi(θ + βi)

)
exp

(
−

1
2

(
ti − T (er)

i

)
(θ + βi)2

)

×

∞∑
n=1

sin
(
1
2
πn

)
exp

− 1
2α2

i

π2n2
(
ti − T (er)

i

) .
Even though the marginal distribution p(x | θ) is a member of the exponential family, neither

the marginal distribution p(t | θ) nor the joint distribution p(x, t | θ) is a member of the exponential
family. The primary reason that the latter cannot be written in exponential family form is because
it implies a statistic s1 = s1(t) = − 1

2
∑

i ti that is sufficient for θ2 and another statistic s2 = s2(t) =∑
i αi xi−

∑
i βi ti that is sufficient for θ. If we express the former as η = η(θ) = θ2, we end up with an

exponential family model subject to constraints on the parameters θ and η: η is functionally related
to ability θ. This is known as a curved exponential family model (Efron, 1975, 1978).
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Characterizing Manifest Probabilities of Latent Trait Models

Consider the general case of an item response theory (IRT) model for accuracy and response
times in exponential family form:

p(x, t | ζ) =

p∏
i=1

p(xi, ti | ζ) =

p∏
i=1

1
Zi(ζ)

bi exp
(

sT
i ζ

)
, (7)

where Zi(ζ) is a normalizing constant, bi = bi(xi, ti) a base measure that does not depend on the
value of the latent variable ζ, and where si = si(xi, ti) is a (possibly vector valued) statistic. For
the HM and DM ζ = (θ, η)T, and for the SM ζ = θ. In our approach to express the manifest
probabilities for models of the same form as Eq. (7) we will make use of the following latent
variable distribution.3

Definition 1. For models p(x, t | ζ) that are of the form of Eq. (7), we may define the latent variable
distribution

g(ζ) =
1
Z

p∏
i=1

Zi(ζ) k(ζ), (8)

where k(ζ) is a kernel density and Z is the normalizing constant of g(ζ). For every kernel distribution
k(ζ) for which the normalizing constant Z is finite, i.e.,

0 < Z =

∫
Ωζ

p∏
i=1

Zi(ζ) k(ζ) dζ < ∞,

where Ωζ is the support of ζ, g(ζ) is a proper distribution.

The distribution in Definition 1 was inspired by the latent trait distribution that has been introduced
with the latent variable expression of a graphical model from physics known as the Ising (1925)
model by Kac (1968, see also Marsman et al., 2018; Epskamp, Maris, Waldorp, & Borsboom,
2018), but a similar construction can also be found in, for instance, Cressie and Holland (1983, Eq.
A9) and McCullagh (1994). We can now state our first result.

Theorem 1. When p(x, t | ζ) is of the form of Eq. (7) and the latent variable distribution g(ζ) in
Eq. (8) is a proper distribution, then the manifest distribution p(x, t) is given by

p(x, t) =
1
Z

p∏
i=1

bi Ek(ζ)

 p∏
i=1

exp
(
sT

i ζ
) ,

where Z is a normalizing constant.

We omit the simple proof of Theorem 1, which requires one to fill in the definitions of the models
in Eqs. (7) and (8), and then integrate out the latent variable ζ. Theorem 1 shows that for any latent
trait model of the form of Eq. (7), combined with a latent variable distribution of the form of Eq.
(8), the manifest distribution can be characterized in terms of the base measures bi and the moment

3For the DM we face the issue that η is functionally related to θ. This forces us to consider a variant of our approach
to characterize its manifest probability distribution p(x, t). We discuss this variant of our approach when we express the
manifest distribution of the DM.
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generating function of the kernel distribution k(ζ). This is similar to the Dutch Identity that was
proposed by Holland (1990) and was further developed by Ip (2002) and Hessen (2012). A version
of the Dutch Identity for models p(x, t | ζ) of the form in Eq. (7) is provided in Appendix A.

Observe that Theorem 1 characterizes the manifest distribution in terms of a moment gen-
erating function. For the practical application of Theorem 1, it is important to find a convenient
form for the moment generating function. This is also the case for the Dutch Identity, where general
analytic solutions have only be found for the (extended) Rasch model (Cressie & Holland, 1983;
Holland, 1990; Tjur, 1982). For other latent trait models, an assumption is made about the posterior
distribution of the latent variable to compute the manifest distribution p(x, t). In a similar way,
a kernel k(ζ) has to be chosen for the application of Theorem 1. The relation between these two
assumptions is discussed in Appendix A.

One compelling reason to choose a normal kernel distribution k(ζ) is that we can then conve-
niently use the Gaussian identity,

exp
(
1
2

a2
)

=

∫
R

1
√

2π
exp

(
aζ −

1
2
ζ2

)
dζ,

to express the manifest probability distributions analytically.

Corollary 1. If p(x, t | ζ) is of the form in Eq. (7), and the latent variable distribution g(ζ) is of
the form in Eq. (8) with a multivariate normal kernel k(ζ) having a mean vector m and covariance
matrix V, then (i)

p(x, t) =
1
Z

exp

 p∑
i=1

ln bi +

 p∑
i=1

si

T

m +
1
2

 p∑
i=1

si

T

V
 p∑

i=1

si


 , (9)

where Z is a normalizing constant, and (ii) the posterior distribution g(ζ | s1, . . . , sp) is multivariate
normal with mean vector m + V

[∑p
i=1 si

]
and covariance matrix V.

We omit the proof of Corollary 1, which requires one to insert in Theorem 1 the moment
generating function of the multivariate normal distribution, i.e.,

E
(
exp

(
rTζ

))
= exp

(
rTm +

1
2

rTVr
)
,

using r =
∑

i si as the interpolating parameter vector. Corollary 1 mirrors the results for assum-
ing posterior normality of the latent trait in combination with the Dutch Identity as evidenced in
Corollary 1 of Holland (1990), Corollary 1 of Ip (2002), and Theorem 2 of Hessen (2012), see also
the log-multiplicative association models of Anderson and Vermunt (2000), and Anderson and Yu
(2007), and the fused latent and graphical IRT model of Chen, Li, Liu, and Ying (2018). In fact,
our Corollary 1 shows that when we use the latent variable model g(ζ) from Eq. (8) with a nor-
mal kernel k(ζ), the posterior distribution of the latent variable is also normal (see also Appendix
A). Similarly, it can be shown that when we assume that the posterior distribution is multivariate
normal with mean vector m + V

[∑p
i=1 si

]
and covariance matrix V, then Corollary 1 of Holland

(1990) assumes a latent variable distribution g(ζ) of the form of Eq. (8) with a multivariate normal
kernel k(ζ) with mean vector m and covariance matrix V. We will use Corollary 1 to characterize
the manifest probability distributions.
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The Manifest Probabilities of the Three Latent Trait Models

In this section we characterize the manifest probability distributions p(x, t) for the three latent
trait models. We consider each of the models in turn, and shortly discuss the results for each of them.

The Hierarchical Model

The version of the HM that is considered here is of the form

p
(
x, t | ζ = (θ, η)T

)
g
(
ζ = (θ, η)T

)
= p(x | θ) p(t | η) g(θ, η),

where the marginal p(x | θ) is the two-parameter logistic model introduced in Eq. (1), the marginal
p(t | η) is the log-normal distribution introduced in Eq. (2), and g(θ, η) is of the form of Eq. (8)
using a bivariate normal kernel distribution k(θ, η) for ability θ and speed η, using a mean vector
m = 0 and covariance matrix

V =

(
1 ρ vη
ρ vη v2

η

)
.

To come to an expression for the manifest probability distribution of this version of the HM
we first rewrite the conditional distribution of accuracies and response times p(x, t | θ, η) to fit the
form of Eq. (7). To this aim, we introduce the statistic

si = si(xi, ti) =

(
xiαi

− ln(ti) 1
2φi

)
,

the base measures

bi = bi(xi, ti) = exp
(
xiαiβi − ln(ti)2 1

2
φi − ln(ti) (1 − φiξi)

)
,

and normalizing constants

Zi(θ, η) =

√
2π
√
φi

{
exp

(
1
2
φi (η − ξi)2

)
+ exp

(
1
2
φi (η − ξi)2 + αi(θ + βi)

)}
.

Having expressed the conditional distribution of accuracies and response times in the form
of Eq. (7), we can now apply Corollary 1 to obtain the manifest distribution of the accuracies x
and response times. It is slightly less cumbersome to characterize this manifest distribution for log-
transformed response times ui = ln(ti) instead of response times directly. The manifest probability
distribution of accuracies and log-transformed response times that results is equal to

p(x, u) =
1
Z

exp

(x
u

)T (
α � β
φ � ξ

)
+

1
2

(
x
u

)T (
ααT −ρ vη αφT

−ρ vη φαT v2
η φφ

T

) (
x
u

) ω(u),

where � refers to Hadamard’s product, and ω(u) is the base measure of a normal distribution

ω(u) =

p∏
i=1

ωi(ui) =

p∏
i=1

exp
(
−

1
2
φi u2

i

)
,

with precisions φi. Observe that for this manifest distribution the association between accuracy
and log-response time is of the opposite sign of the correlation ρ between speed η and ability θ:
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faster responses correspond to correct answers when ρ > 0; slower responses correspond to correct
answers when ρ < 0.

There are two important characteristics that can be observed from the manifest probability
distribution of our version of the HM. Firstly, the base measure ω(u) that is used here stipulates
an a priori restriction on the variance of the speed parameter v2

η and the item specific precisions
φi. To see this, observe that for this base measure the manifest distribution is a proper probability
distribution—i.e., integrates to one—if and only if

v2
η < min

i

(
1
φi

)
.

Since the variance of the log(ti) is equal to,

Var(log(ti)) = E(Var(log(ti) | η)) + Var(E(log(ti) | η)) =
1
φi

+ v2
η,

this restriction on v2
η and φi implies that the speed variable can account for less than 50% of the total

variance of the log(ti).
A second important characteristic that can be observed from the manifest probability distribu-

tion of our version of the HM concerns the association between accuracies and log response times.
First, note that when the association between an accuracy xi and log-transformed response time ui

in the manifest distribution is equal to zero, these variables are independent conditional upon the
remaining accuracies and log-transformed response times:

ρ vη αi φi = 0⇐⇒ xi y ui

∣∣∣∣∣ (
x(i), u(i)

)T
.

Thus, xi and ui are conditionally independent whenever either the correlation between speed and
ability is zero; the discrimination of item i is zero; the precision of item i is zero and/or the a priori
variance of the speed variable is zero. Observe, however, that when the discrimination of item i is
zero the accuracy for item i is completely independent of ability, and the same holds for its precision
and the dependency between the associated response time and speed. Thus, the only non-trivial way
that accuracy and response times are independent in the manifest expression of our version of the
HM is when ability and speed are a priori independent. But this entails the extreme case that all of
the accuracies would be independent from all of the response times.

The Signed Residual Time Model

There are two versions of the SM that are considered here. The first version of the SM
stipulates a distribution of accuracies and residual response times, and the second version of the
SM stipulates a distribution of accuracies and pseudo response times. We will first characterize the
manifest probability distribution of accuracies and residual times, and revert to pseudo response
times after that.

The manifest distribution of accuracy and residual response time. The SM was intro-
duced in Eq. (3) and can be expressed in the exponential family form of Eq. (7) with sufficient
statistics

si = si(xi, ti) = (2xi − 1)(di − ti),
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base measures
bi = bi(xi, ti) = exp ((2xi − 1)(di − ti)βi) ,

and normalizing constants

Zi(θ) =
exp (di(θ + βi)) − exp (−di(θ + βi))

θ + βi
. (10)

Having expressed the conditional distribution of accuracies and residual times of the SM in
the form of Eq. (7) we can now use Corollary 1 to obtain their manifest distribution. Assuming a
normal kernel with mean m = 0 and variance V = 1, Corollary 1 leads us to the following manifest
distribution,

p(x, t) =
1
Z

exp
([

(2x − 1p) � (d − t)
]T
β +

1
2

(
2x − 1p

)T
(d − t) (d − t)T

(
2x − 1p

))
,

where 1p is the unit vector of length p. One way to write this distribution more succinctly is to
express it in terms of the random variables yi = (2xi − 1) and residual times ri = di − ti, which gives

p(y, r) =
1
Z

exp
(
yT (r � β) + yT

(
1
2

r rT
)

y
)
. (11)

In this model, larger residual times (faster responses) are associated with an increased probability
that a person responds accurately to easy items (βi > 0) and a decreased probability to respond
accurately to difficult items (βi < 0). The association between the response accuracies of different
items is positive and increases with increasing residual response times (faster responses).

There are two important characteristics that can be observed from the manifest probability
distribution of the SM. Firstly, we observe that this manifest expression closely resembles a graphi-
cal model from physics that is known as the Ising model (Lenz, 1920; Ising, 1925). The Ising model
is characterized by the following probability distribution over realizations of y

p(y) =
1
Z

exp
(
yTµ + yTΣ y

)
,

where µ denotes a vector of p intercepts µi, andΣ is a symmetric p×p matrix of pairwise interactions
σi j. However, where the intercepts and interactions are fixed effects in the Ising network model, the
intercepts µi and pairwise interactions σi j are random effects in the manifest expression p(y, r), with
µi = ri × βi and σi j = 1

2 ri × r j. The SM provides a novel way to model the associations of the Ising
model as random effects.

A second important characteristic that can be observed from the manifest probability distri-
bution of the SM concerns the association between accuracies and residual response times. Whereas
we have found that for the manifest distribution of the HM that accuracy can be independent of re-
sponse time in a non-trivial manner with ρ = 0, accuracy cannot be independent of residual time in
a non-trivial manner for the manifest expression of the SM. This can be observed, for example, from
the conditional distribution of accuracy and residual response time for an item i given the responses
and residual times of the remaining items

p
(
yi, ri | y(i), t(i)

)
=

exp
(
yiri

[
βi +

∑
j,i y jr j

])
exp(βi+

∑
j,i y jr j)−exp(−βi−

∑
j,i y jr j)

βi+
∑

j,i y jr j

,

from which it is clear that there are no values of βi (or y(i) and r(i)) that render yi and ri as (condi-
tionally) independent.
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The manifest distribution of accuracy and pseudo response time. An alternative formu-
lation of the SM is in terms of accuracies and pseudo response times, which is of the form

p(x, t∗ | θ) = p(x | θ) p(t∗ | θ),

where the marginal p(x | θ) is the two-parameter logistic model in Eq. (1), and the marginal p(t∗ | θ)
is given in Eq. (5).

To characterize the manifest distribution of accuracies and pseudo response times for this
version of the SM we can take two approaches. Firstly, we may express the conditional distribution
of accuracies and pseudo response times p(x, t∗ | θ) in the exponential family form of Eq. (7) and
then apply Corollary 1 using a normal kernel distribution with mean m = 0 and variance V = 1
to this conditional distribution. Alternatively, we may rewrite the sufficient statistic for residual
response times in the manifest distribution in Eq. (11) through the relation

s∗i = xidi − t∗i =

di − ti if xi = 1
−(di − ti) if xi = 0

⇐⇒ (2xi − 1)(di − ti) = yiri = si.

Both approaches lead to the following manifest distribution of accuracies and pseudo response times

p(x, t∗) =
1
Z

exp

(x
t∗

)T (
d � β
−β

)
+

1
2

(
x
t∗

)T (
d dT −d 1T

p
−1p dT 1p 1T

p

) (
x
t∗

) . (12)

Observe that for this model both the associations between accuracies and the associations between
pseudo response times are positive, yet the associations between accuracies and pseudo response
times are negative: correct responses are associated to smaller pseudo time values (faster response
times); incorrect responses are associated to larger pseudo time values (slower response times).

The manifest distribution of accuracies and pseudo response times of the SM is of the same
form as the manifest distribution of accuracies and the log transformed response times of the HM,
and thus they share certain characteristics. For example, both models share the following Markov
property: When the association between an accuracy and a response time for an item i is equal
to zero, then this implies that these two variables are independent conditional upon the remaining
accuracies and response times,

−
1
2

di = 0⇐⇒ xi y t∗i

∣∣∣∣∣ (
x(i), t∗(i)

)T
.

However, it is immediately clear that this association is never zero in practice, since di = 0 implies
a zero second time limit for item i.

The Drift Diffusion Model

The version of the DM that is considered here —introduced in Eq. (6)— cannot be expressed
in the exponential family form of Eq. (7). This means that we cannot make use of Theorem 1 or
Corollary 1 to express its manifest probability distribution. However, we can express the conditional
distribution of accuracy and response time in the following form

p(x, t | θ) =

p∏
i=1

1
Zi(θ)

bi exp
(
−s1iθ

2 + s2iθ
)
.



MANIFEST DISTRIBUTIONS FOR ACCURACY AND RESPONSE TIMES 12

With the DM expressed in this form we can use a latent variable distribution of the form of Eq. (8)
in combination with a normal kernel density k(θ) to come to an analytic expression for the manifest
probability distribution.

To express the DM in this form we introduce the statistics

s1i=
1
2

ti

s2i= αi xi − βi ti,

the base measures

bi = bi(xi, ti) = exp
(
αi βi xi −

1
2
β2

i ti

) ∞∑
n=1

sin
(
1
2
πn

)
exp

− 1
2α2

i

π2n2 (
ti − T(er)

) ,
and normalizing constants

Zi(θ) =
α2

i

π
exp

(
1
2
αi(θ + βi) −

1
2

T(er)(θ + βi)2
)
.

We can now define a latent trait distribution g(θ) of the form of Eq. (8).
When we use a latent trait distribution g(θ) of the form of Eq. (8) with a normal kernel density

k(θ) with mean m = 0 and variance V = 1, the manifest distribution for our version of the DM can
be expressed as follows

p(x, t)=
∫
R

p∏
i=1

1
Zi(θ)

bi exp
(
−s1iθ

2 + s2iθ
) 1

Z

p∏
i=1

Zi(θ)
1
√

2π
exp

(
−

1
2
θ2

)
dθ

=
1

Z
√

2π

p∏
i=1

bi

∫
R

exp

−1
2

2 p∑
i=1

s1i + 1

 θ2 +
1
2

2 p∑
i=1

s2i

 θ dθ

=
1

Z
√

2π

p∏
i=1

bi

∫
R

exp

−1
2

2 p∑
i=1

s1i + 1

 θ2 +

 p∑
i=1

s2i

 θ dθ

=
1
Z

p∏
i=1

bi
1√

2
∑p

i=1 s1i + 1
exp

1
2

[∑p
i=1 s2i

]2[
2
∑p

i=1 s1i + 1
]
 .

Rewriting the statistics in terms of accuracies and response times, combining exponents in the base
measures bi with that in the rightmost factor and simplifying the result leads us to the following
expression of the manifest distribution

p(x, t) =
1
Z

exp

(xt
)T (
α � β
− 1

2β � β

)
+

1
2t+ + 2

(
x
t

)T (
α
−β

) (
α
−β

)T (
x
t

) ω(t) (13)

where t+ =
∑

i ti, and ω(t) is a base measure,

ω(t) =
1

√
t+ + 1

p∏
i=1

∞∑
n=1

sin
(
1
2
πn

)
exp

− 1
2α2

i

π2n2 (
ti − T(er)

) .
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There are two important characteristics that can be observed from the manifest probability
distribution of our version of the DM. The first observation is that the association between both
accuracies and response times is scaled by the total time t+ that is spent on the test. This implies
smaller associations between accuracies and response times for pupils that take longer to complete
the test, and larger associations for pupils that take less time to complete the test. In none of the
three other manifest probability distributions that were considered here have we seen an influence
of the total time that was spent on the test.

A second important characteristic that can be observed from the manifest distribution of our
version of the DM concerns the association between accuracies and response time. The associations
between accuracies and response times are scaled with the total test time, i.e.,

xi ti
1

1 + t+

1
2
αi βi,

which implies that both accuracies and response times are associated to the (remaining) response
times. There is only one way for accuracies to be independent from response times in the manifest
distribution, which is when the associated discriminations are equal to zero. However, when this
is the case the accuracies are not only independent of all of the response times, but they are also
independent of the latent variable (ability) in the DM.

Discussion

In this paper we have characterized and studied the manifest probability distributions for
accuracy and response times of three latent trait models: The Hierarchical model (HM) of van
der Linden (2007), the Signed Residual Time model (SM) of Maris and van der Maas (2012),
and the Drift Diffusion model (DM) as proposed by Tuerlinckx and De Boeck (2005). One major
difference between the HM and DM on the one hand, and the SM on the other hand is in the
relation they stipulate between accuracy and response times after having conditioned on the latent
trait variables. Whereas the HM and DM assume or imply that accuracy and response time are
independent conditional upon the latent variable, i.e.,

p(x, t | ζ) = p(x | ζ)p(t | ζ),

this is not the case for the SM, where accuracy and response times are still correlated after condi-
tioning on the latent variable.

One of our main findings is that accuracies and response times are dependent on each other in
the manifest distributions for each of the investigated latent trait models. That is, the accuracy and
response time of an item i are associated in the manifest distribution, a result that holds regardless of
whether the underlying latent trait model assumes or implies conditional independence or not. Only
for fringe cases have we found that accuracy and response time can become uncorrelated, such
as when there is a zero correlation between speed and ability in the HM. Even though we found
that the accuracies and response times are associated in each of the manifest distributions, we also
observed fundamental differences in what function of response time was related to ability (response
accuracy). For example, the log-transformed response times are modeled in the HM, the residual
response times or pseudo response times are modeled in the SM, and in the DM the response times
are modeled directly. This suggests an alternative direction of research on latent trait models for
accuracy and response times, one that is less focused on the conditional independence property of
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the latent trait model and more focused on what response time function is best associated with ability
(or response accuracy). A comparison of the manifest distributions that are found in this paper can
help decide which function of response times is best associated to ability (or response accuracy).

This is not to say that the conditional independence property for the latent trait model does not
have an impact in the characterization of its manifest distribution. In fact, latent trait models in the
exponential family with the conditional independence property appear to generate manifest proba-
bility distributions that are known as Markov random fields (Kindermann and Snell, 1980), which
are undirected graphical models with Markov properties (e.g., Lauritzen, 2004). Most importantly
here is the property that the accuracy and response time of an item i are independent conditional
upon the remaining accuracies and response times whenever the association between accuracy and
response time of item i is equal to zero. This is an important and interesting property. The HM and
SM for pseudo response times are examples of models with this property, even though we find that
for these two models the association between accuracy and response time of an item i is equal to zero
only in fringe cases in practice. In earlier work on the multidimensional IRT model we have found
expressions of the manifest probability distribution with the Markov property that could express
conditional independencies in more detail (Marsman, Maris, Bechger, and Glas, 2015; Epskamp
et al., 2018; Marsman et al., 2018). This suggests that if we want to seriously model the depen-
dency between accuracy and response time for a particular item given the remaining accuracies and
response times, we have to consider higher-dimensional latent trait models.

Even though the manifest probability distributions of the DM and the SM for residual times
are not Markov random fields4, these manifest expressions are interesting in their own right. In
the manifest expression for the DM, for example, the associations between accuracies and response
times are a function of the total time the pupil has spent on the test, an aspect that is not being
modeled in any of the other manifest expressions. This is one potential point of departure for
modelling the impact of time restrictions on a test on the distribution of response accuracy. The
manifest expression of the SM, on the other hand, provides a new and interesting way to view an
old model, the Ising model. The Ising model is a undirected graphical model that is characterized
by the following distribution,

p(x) =
1
Z

exp
(
xTµ + xTΣx

)
,

where x is a p-dimensional vector of (0, 1) or (−1, 1) variables xi, µ a p−dimensional vector of
main effects, and Σ a p × p symmetric matrix of pairwise associations between variables. Whereas
the pairwise associations are fixed effects in the Ising model, the manifest distribution of the SM
indicates one way to model these associations as a random effect.

One famous conjecture from Holland (1990, p. 11) is that if there are large number of items
on a test, and a smooth unidimensional IRT model (for accuracies) is used, the posterior distribution
of the latent trait will be approximately normal. This conjecture has inspired several publications
on the posterior normality of the latent trait in the context of IRT models for response accuracy
(e.g., Chang and Stout, 1993; Chang, 1996; Zhang and Stout, 1997). An interesting conclusion
that Holland (1990) deduced from this conjecture, in combination with the assumption that the log-
likelihoods of the p items can be approximated using a p-variate normal with a rank one covariance

4Observe, however, that for both models the conditional distribution p(x | t) is a Markov random field, because they
share the Markov property that when the association between the accuracy of an item i and an item j is equal to zero,
these two variables are independent given the accuracy on the remaining items. Incidentally, for the manifest expressions
of both the SM and the DM the associated conditional distribution is another instance of the Ising model.
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matrix, is that the log of the manifest distribution of accuracy is approximately of quadratic form
consisting of p main effects and a p × p matrix of associations that was of rank one. This enticed
Holland (1990) to add a second conjecture that only two parameters can be consistently estimated
per item. This idea points to interesting avenues of future research, such as the asymptotic posterior
normality of the latent trait in the context of IRT models for response accuracy and response times.
If it is reasonable to approximate the posterior of the latent trait (or the log-likelihood function)
with a normal distribution, then we can use this approximation in combination with Corollary 1 or
Theorem 2 to investigate the complexity of models for response accuracy and response times, and
how model complexity is impacted by conditional independence property of the underlying latent
trait model.

The latent variable distribution g(ζ) has allowed us to express the manifest probability distri-
butions for a large class of latent trait models, but it also generated an unexpected parameter restric-
tion in the manifest distribution of the HM, where we found that the variance of the speed variable
v2
η needed to be smaller than the smallest log-normal variance φ−1

i . This parameter restriction fol-
lows from omitting the normalizing constants Zi(ζ) of the latent variable model in Eq. (7), which
provides prior model structure. When a regular latent variable distribution is used —for example, a
normal distribution on η— the model structure that is provided by the normalizing constants Zi(ζ) is
integrated instead. Marsman et al. (2018) studied a similar scaling issue of the posterior distribution
that results from using the latent variable distribution g(ζ) in the context of multidimensional IRT
(see also Marsman, Waldorp, & Maris, 2017). Similar observations can be made for the posteriors
and latent variable distributions that are generated by the latent variable model in Corollary 1 of
Holland (1990), Corollary 1 of Hessen (2012) and Theorem 1 in Ip (2002).

The particular restriction that is imposed on the variance of the speed variable v2
η in the

HM is a rather strong restriction from a substantive point of view. From the perspective of the
manifest distribution, however, it might be less of an issue since v2

η is simply a scaling factor for
the interactions between the log transformed response times and accuracies x. That is, the manifest
structure would not change when we absorbed v2

η in the precisions and simply use the matrix of
associations:

Σ =

(
ααT −ραφT

−ρφαT φφT

)
.

Alternatively, we may adopt a different base measure ω(·) to remove the restriction.
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Appendix
A The relation between Theorem 1 and the Dutch Identity

In this appendix we aim to clarify two things. First, we aim to clarify how our Theorem 1 relates
to the Dutch Identity. Secondly, we aim to clarify how the choice of a multivariate normal posterior
in the Dutch Identity relates to choosing a multivariate normal kernel k(ζ) in Theorem 1. Because
a Dutch Identity has not been formulated for models of the exponential family form of Eq. (7), we
start with formulating a Dutch Identity for models of this form.

Theorem 2. Suppose that p(x, t) is of the form

p(x, t) =

∫
Ωζ

p(x, t | ζ) f (ζ) dζ,

where Ωζ is the support of ζ, and p(x, t | ζ) is of the form of Eq. (7). Then for any vector y ∈ Ωx
and w ∈ Ωt, where Ωx and Ωt denote the support of x and t, respectively, we have

p(x, t)
p(y, w)

=

p∏
i=1

bi(xi, ti)
bi(yi, wi)

E f

exp

 p∑
i=1

[
si(xi, ti) − si(yi, wi)

]T ζ
∣∣∣∣∣∣∣ S =

∑
i

si(yi, wi)

 .
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Proof.

p(x, t)
p(y, w)

=

∫
R

∏p
i=1

1
Zi(ζ)

bi(xi, ti) e[si(xi, ti)Tζ] f (ζ) dζ∫
R

∏p
i=1

1
Zi(ζ)

bi(yi, wi) e[si(yi, wi)Tζ] f (ζ) dζ

=

p∏
i=1

bi(xi, ti)
bi(yi, wi)

∫
R

∏p
i=1

1
Zi(ζ)

e[si(xi, ti)Tζ] f (ζ)∫
R

∏p
i=1

1
Zi(ζ)

e[si(yi, wi)Tζ] f (ζ) dζ
dζ

=

p∏
i=1

bi(xi, ti)
bi(yi, wi)

∫
R

p∏
i=1

e
[
[si(xi, ti)−si(yi, wi)]T

ζ
] ∏p

i=1
1

Zi(ζ)
e[si(yi, wi)Tζ] f (ζ)∫

R

∏p
i=1

1
Zi(ζ)

e[si(yi, wi)Tζ] f (ζ) dζ
dζ

=

p∏
i=1

bi(xi, ti)
bi(yi, wi)

∫
R

p∏
i=1

e
[
[si(xi, ti)−si(yi, wi)]T

ζ
]
f

ζ | S =
∑

i

si(yi, wi)

 dζ

=

p∏
i=1

bi(xi, ti)
bi(yi, wi)

E f

exp

 p∑
i=1

[
si(xi, ti) − si(yi, wi)

]T ζ
∣∣∣∣∣∣∣ S =

∑
i

si(yi, wi)

 .
�

It is easy to show that whenever f (ζ) is of the form of g(ζ) in Eq. (8), the expression for the
ratio in Theorem 2 reduces to

p(x, t)
p(y, w)

=

p∏
i=1

bi(xi, ti)
bi(yi, wi)

×
Ek

(
exp

(∑p
i=1 si(xi, ti)Tζ

))
Ek

(
exp

(∑p
i=1 si(yi, wi)Tζ

)) ,
which was to be expected from Theorem 1.

One important result that follows from the Dutch Identity is that whenever the posterior
f (θ | x, t) = f (θ | s) is chosen to be (multivariate) normal, we may express the marginals p(x, t) in a
form similar to that expressed in Corollary 1. This is shown, for example, in Corollary 1 of Holland
(1990), Corollary 1 of Ip (2002) and Theorem 2 of Hessen (2012). For Theorem 1, however, it
suffices to choose the kernel density k(ζ) to be (multivariate) normal instead. To see why this is the
case, consider the posterior with a prior distribution f (θ) = g(θ) of the form of Eq. (8),

g(θ | s) ∝
p∏

i=1

1
Zi(ζ)

e[si(yi, wi)Tζ]g(ζ)

=

p∏
i=1

1
Zi(ζ)

e[si(yi, wi)Tζ]
p∏

i=1

Zi(ζ) k(ζ)

= exp

 p∑
i=1

si(yi, wi)T

 ζ k(ζ).

This is proportional to a multivariate normal distribution if and only if k(ζ) is a multivariate normal
distribution. This shows why the assumption of posterior normality in combination with the Dutch
Identity and the assumption of a normal kernel density in combination with our Theorem 1 lead to
the same result.


